1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
const std = @import("std");
const assert = std.debug.assert;
const builtin = @import("builtin");
const log = std.log.scoped(.macho);
const macho = std.macho;
const mem = std.mem;
const native_endian = builtin.target.cpu.arch.endian();
const MachO = @import("../MachO.zig");
pub fn readFatHeader(file: std.fs.File) !macho.fat_header {
return readFatHeaderGeneric(macho.fat_header, file, 0);
}
fn readFatHeaderGeneric(comptime Hdr: type, file: std.fs.File, offset: usize) !Hdr {
var buffer: [@sizeOf(Hdr)]u8 = undefined;
const nread = try file.preadAll(&buffer, offset);
if (nread != buffer.len) return error.InputOutput;
var hdr = @as(*align(1) const Hdr, @ptrCast(&buffer)).*;
mem.byteSwapAllFields(Hdr, &hdr);
return hdr;
}
pub const Arch = struct {
tag: std.Target.Cpu.Arch,
offset: u32,
size: u32,
};
pub fn parseArchs(file: std.fs.File, fat_header: macho.fat_header, out: *[2]Arch) ![]const Arch {
var count: usize = 0;
var fat_arch_index: u32 = 0;
while (fat_arch_index < fat_header.nfat_arch and count < out.len) : (fat_arch_index += 1) {
const offset = @sizeOf(macho.fat_header) + @sizeOf(macho.fat_arch) * fat_arch_index;
const fat_arch = try readFatHeaderGeneric(macho.fat_arch, file, offset);
// If we come across an architecture that we do not know how to handle, that's
// fine because we can keep looking for one that might match.
const arch: std.Target.Cpu.Arch = switch (fat_arch.cputype) {
macho.CPU_TYPE_ARM64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_ARM_ALL) .aarch64 else continue,
macho.CPU_TYPE_X86_64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_X86_64_ALL) .x86_64 else continue,
else => continue,
};
out[count] = .{ .tag = arch, .offset = fat_arch.offset, .size = fat_arch.size };
count += 1;
}
return out[0..count];
}
|