const std = @import("std"); const assert = std.debug.assert; const builtin = @import("builtin"); const log = std.log.scoped(.macho); const macho = std.macho; const mem = std.mem; const native_endian = builtin.target.cpu.arch.endian(); const MachO = @import("../MachO.zig"); pub fn readFatHeader(file: std.fs.File) !macho.fat_header { return readFatHeaderGeneric(macho.fat_header, file, 0); } fn readFatHeaderGeneric(comptime Hdr: type, file: std.fs.File, offset: usize) !Hdr { var buffer: [@sizeOf(Hdr)]u8 = undefined; const nread = try file.preadAll(&buffer, offset); if (nread != buffer.len) return error.InputOutput; var hdr = @as(*align(1) const Hdr, @ptrCast(&buffer)).*; mem.byteSwapAllFields(Hdr, &hdr); return hdr; } pub const Arch = struct { tag: std.Target.Cpu.Arch, offset: u32, size: u32, }; pub fn parseArchs(file: std.fs.File, fat_header: macho.fat_header, out: *[2]Arch) ![]const Arch { var count: usize = 0; var fat_arch_index: u32 = 0; while (fat_arch_index < fat_header.nfat_arch and count < out.len) : (fat_arch_index += 1) { const offset = @sizeOf(macho.fat_header) + @sizeOf(macho.fat_arch) * fat_arch_index; const fat_arch = try readFatHeaderGeneric(macho.fat_arch, file, offset); // If we come across an architecture that we do not know how to handle, that's // fine because we can keep looking for one that might match. const arch: std.Target.Cpu.Arch = switch (fat_arch.cputype) { macho.CPU_TYPE_ARM64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_ARM_ALL) .aarch64 else continue, macho.CPU_TYPE_X86_64 => if (fat_arch.cpusubtype == macho.CPU_SUBTYPE_X86_64_ALL) .x86_64 else continue, else => continue, }; out[count] = .{ .tag = arch, .offset = fat_arch.offset, .size = fat_arch.size }; count += 1; } return out[0..count]; }