aboutsummaryrefslogtreecommitdiff
path: root/src/codegen/spirv.zig
blob: 52b2884255ce0194e9b793118e91c881b33fa980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);

const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;

const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const ir = @import("../ir.zig");
const Inst = ir.Inst;

pub const TypeMap = std.HashMap(Type, u32, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
pub const ValueMap = std.AutoHashMap(*Inst, u32);

pub fn writeOpcode(code: *std.ArrayList(u32), opcode: Opcode, arg_count: u32) !void {
    const word_count = arg_count + 1;
    try code.append((word_count << 16) | @enumToInt(opcode));
}

pub fn writeInstruction(code: *std.ArrayList(u32), opcode: Opcode, args: []const u32) !void {
    try writeOpcode(code, opcode, @intCast(u32, args.len));
    try code.appendSlice(args);
}

/// This structure represents a SPIR-V binary module being compiled, and keeps track of relevant information
/// such as code for the different logical sections, and the next result-id.
pub const SPIRVModule = struct {
    next_result_id: u32,
    types_globals_constants: std.ArrayList(u32),
    fn_decls: std.ArrayList(u32),

    pub fn init(allocator: *Allocator) SPIRVModule {
        return .{
            .next_result_id = 1, // 0 is an invalid SPIR-V result ID.
            .types_globals_constants = std.ArrayList(u32).init(allocator),
            .fn_decls = std.ArrayList(u32).init(allocator),
        };
    }

    pub fn deinit(self: *SPIRVModule) void {
        self.types_globals_constants.deinit();
        self.fn_decls.deinit();
    }

    pub fn allocResultId(self: *SPIRVModule) u32 {
        defer self.next_result_id += 1;
        return self.next_result_id;
    }

    pub fn resultIdBound(self: *SPIRVModule) u32 {
        return self.next_result_id;
    }
};

/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
    module: *Module,
    spv: *SPIRVModule,

    args: std.ArrayList(u32),
    next_arg_index: u32,

    types: TypeMap,
    values: ValueMap,

    decl: *Decl,
    error_msg: ?*Module.ErrorMsg,

    const Error = error{ AnalysisFail, OutOfMemory };

    /// This structure is used to return information about a type typically used for arithmetic operations.
    /// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors,
    /// so we can easily represent those as arithmetic types.
    /// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers
    /// to the vector's element type.
    const ArithmeticTypeInfo = struct {
        /// A classification of the inner type.
        const Class = enum {
            /// A boolean.
            bool,

            /// A regular, **native**, integer.
            /// This is only returned when the backend supports this int as a native type (when
            /// the relevant capability is enabled).
            integer,

            /// A regular float. These are all required to be natively supported. Floating points for
            /// which the relevant capability is not enabled are not emulated.
            float,

            /// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this
            /// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still
            /// within the limits of the largest natively supported integer type.
            strange_integer,

            /// An integer with more bits than the largest natively supported integer type.
            composite_integer,
        };

        /// The number of bits in the inner type.
        /// Note: this is the actual number of bits of the type, not the size of the backing integer.
        bits: u16,

        /// Whether the type is a vector.
        is_vector: bool,

        /// Whether the inner type is signed. Only relevant for integers.
        signedness: std.builtin.Signedness,

        /// A classification of the inner type. These scenarios
        /// will all have to be handled slightly different.
        class: Class,
    };

    fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error {
        @setCold(true);
        const src_loc = src.toSrcLocWithDecl(self.decl);
        self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
        return error.AnalysisFail;
    }

    fn resolve(self: *DeclGen, inst: *Inst) !u32 {
        if (inst.value()) |val| {
            return self.genConstant(inst.ty, val);
        }

        return self.values.get(inst).?; // Instruction does not dominate all uses!
    }

    /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
    /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
    /// included), the width of the underlying type which represents it, given the enabled features for the current target.
    /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
    /// that size. In this case, multiple elements of the largest type should be used.
    /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
    /// The result is valid to be used with OpTypeInt.
    /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
    /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
    /// TODO: Should the result of this function be cached?
    fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
        const target = self.module.getTarget();

        // TODO: Figure out what to do with u0/i0.
        std.debug.assert(bits != 0);

        // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
        // 32-bit integers are always supported (see spec, 2.16.1, Data rules).
        const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
            .{ .bits = 8, .feature = .Int8 },
            .{ .bits = 16, .feature = .Int16 },
            .{ .bits = 32, .feature = null },
            .{ .bits = 64, .feature = .Int64 },
        };

        for (ints) |int| {
            const has_feature = if (int.feature) |feature|
                Target.spirv.featureSetHas(target.cpu.features, feature)
            else
                true;

            if (bits <= int.bits and has_feature) {
                return int.bits;
            }
        }

        return null;
    }

    /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
    /// the Int64 capability is enabled).
    /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
    /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
    /// is no way of knowing whether those are actually supported.
    /// TODO: Maybe this should be cached?
    fn largestSupportedIntBits(self: *DeclGen) u16 {
        const target = self.module.getTarget();
        return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
            64
        else
            32;
    }

    /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
    /// arrays of largestSupportedIntBits().
    /// Asserts `ty` is an integer.
    fn isCompositeInt(self: *DeclGen, ty: Type) bool {
        return self.backingIntBits(ty) == null;
    }

    fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
        const target = self.module.getTarget();

        return switch (ty.zigTypeTag()) {
            .Bool => ArithmeticTypeInfo{
                .bits = 1, // Doesn't matter for this class.
                .is_vector = false,
                .signedness = .unsigned, // Technically, but doesn't matter for this class.
                .class = .bool,
            },
            .Float => ArithmeticTypeInfo{
                .bits = ty.floatBits(target),
                .is_vector = false,
                .signedness = .signed, // Technically, but doesn't matter for this class.
                .class = .float,
            },
            .Int => blk: {
                const int_info = ty.intInfo(target);
                // TODO: Maybe it's useful to also return this value.
                const maybe_backing_bits = self.backingIntBits(int_info.bits);
                break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
                    if (backing_bits == int_info.bits)
                        ArithmeticTypeInfo.Class.integer
                    else
                        ArithmeticTypeInfo.Class.strange_integer
                else
                    .composite_integer };
            },
            // As of yet, there is no vector support in the self-hosted compiler.
            .Vector => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
            // TODO: For which types is this the case?
            else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
        };
    }

    /// Generate a constant representing `val`.
    /// TODO: Deduplication?
    fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!u32 {
        const code = &self.spv.types_globals_constants;
        const result_id = self.spv.allocResultId();
        const result_type_id = try self.getOrGenType(ty);

        if (val.isUndef()) {
            try writeInstruction(code, .OpUndef, &[_]u32{ result_type_id, result_id });
            return result_id;
        }

        switch (ty.zigTypeTag()) {
            .Bool => {
                const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
                try writeInstruction(code, opcode, &[_]u32{ result_type_id, result_id });
            },
            .Float => {
                // At this point we are guaranteed that the target floating point type is supported, otherwise the function
                // would have exited at getOrGenType(ty).

                // f16 and f32 require one word of storage. f64 requires 2, low-order first.

                switch (val.tag()) {
                    .float_16 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u16, val.castTag(.float_16).?.data) }),
                    .float_32 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u32, val.castTag(.float_32).?.data) }),
                    .float_64 => {
                        const float_bits = @bitCast(u64, val.castTag(.float_64).?.data);
                        try writeInstruction(code, .OpConstant, &[_]u32{
                            result_type_id,
                            result_id,
                            @truncate(u32, float_bits),
                            @truncate(u32, float_bits >> 32),
                        });
                    },
                    .float_128 => unreachable, // Filtered out in the call to getOrGenType.
                    // TODO: What tags do we need to handle here anyway?
                    else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: float constant generation of value {s}\n", .{val.tag()}),
                }
            },
            else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ty.zigTypeTag()}),
        }

        return result_id;
    }

    fn getOrGenType(self: *DeclGen, ty: Type) Error!u32 {
        // We can't use getOrPut here so we can recursively generate types.
        if (self.types.get(ty)) |already_generated| {
            return already_generated;
        }

        const target = self.module.getTarget();
        const code = &self.spv.types_globals_constants;
        const result_id = self.spv.allocResultId();

        switch (ty.zigTypeTag()) {
            .Void => try writeInstruction(code, .OpTypeVoid, &[_]u32{result_id}),
            .Bool => try writeInstruction(code, .OpTypeBool, &[_]u32{result_id}),
            .Int => {
                const int_info = ty.intInfo(target);
                const backing_bits = self.backingIntBits(int_info.bits) orelse {
                    // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
                    return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement composite ints {}", .{ty});
                };

                // TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
                try writeInstruction(code, .OpTypeInt, &[_]u32{
                    result_id,
                    backing_bits,
                    switch (int_info.signedness) {
                        .unsigned => 0,
                        .signed => 1,
                    },
                });
            },
            .Float => {
                // We can (and want) not really emulate floating points with other floating point types like with the integer types,
                // so if the float is not supported, just return an error.
                const bits = ty.floatBits(target);
                const supported = switch (bits) {
                    16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
                    // 32-bit floats are always supported (see spec, 2.16.1, Data rules).
                    32 => true,
                    64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
                    else => false,
                };

                if (!supported) {
                    return self.fail(.{ .node_offset = 0 }, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
                }

                try writeInstruction(code, .OpTypeFloat, &[_]u32{ result_id, bits });
            },
            .Fn => {
                // We only support zig-calling-convention functions, no varargs.
                if (ty.fnCallingConvention() != .Unspecified)
                    return self.fail(.{ .node_offset = 0 }, "Unsupported calling convention for SPIR-V", .{});
                if (ty.fnIsVarArgs())
                    return self.fail(.{ .node_offset = 0 }, "VarArgs unsupported for SPIR-V", .{});

                // In order to avoid a temporary here, first generate all the required types and then simply look them up
                // when generating the function type.
                const params = ty.fnParamLen();
                var i: usize = 0;
                while (i < params) : (i += 1) {
                    _ = try self.getOrGenType(ty.fnParamType(i));
                }

                const return_type_id = try self.getOrGenType(ty.fnReturnType());

                // result id + result type id + parameter type ids.
                try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u32, ty.fnParamLen()));
                try code.appendSlice(&.{ result_id, return_type_id });

                i = 0;
                while (i < params) : (i += 1) {
                    const param_type_id = self.types.get(ty.fnParamType(i)).?;
                    try code.append(param_type_id);
                }
            },
            .Vector => {
                // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
                // which work on them), so simply use those.
                // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
                // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
                // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
                // is adequate at all for this.

                // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
                return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type Vector", .{});
            },
            .Null,
            .Undefined,
            .EnumLiteral,
            .ComptimeFloat,
            .ComptimeInt,
            .Type,
            => unreachable, // Must be const or comptime.

            .BoundFn => unreachable, // this type will be deleted from the language.

            else => |tag| return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type {}s", .{tag}),
        }

        try self.types.putNoClobber(ty, result_id);
        return result_id;
    }

    pub fn gen(self: *DeclGen) !void {
        const decl = self.decl;
        const result_id = decl.fn_link.spirv.id;

        if (decl.val.castTag(.function)) |func_payload| {
            std.debug.assert(decl.ty.zigTypeTag() == .Fn);
            const prototype_id = try self.getOrGenType(decl.ty);
            try writeInstruction(&self.spv.fn_decls, .OpFunction, &[_]u32{
                self.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
                result_id,
                @bitCast(u32, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
                prototype_id,
            });

            const params = decl.ty.fnParamLen();
            var i: usize = 0;

            try self.args.ensureCapacity(params);
            while (i < params) : (i += 1) {
                const param_type_id = self.types.get(decl.ty.fnParamType(i)).?;
                const arg_result_id = self.spv.allocResultId();
                try writeInstruction(&self.spv.fn_decls, .OpFunctionParameter, &[_]u32{ param_type_id, arg_result_id });
                self.args.appendAssumeCapacity(arg_result_id);
            }

            // TODO: This could probably be done in a better way...
            const root_block_id = self.spv.allocResultId();
            _ = try writeInstruction(&self.spv.fn_decls, .OpLabel, &[_]u32{root_block_id});
            try self.genBody(func_payload.data.body);

            try writeInstruction(&self.spv.fn_decls, .OpFunctionEnd, &[_]u32{});
        } else {
            return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
        }
    }

    fn genBody(self: *DeclGen, body: ir.Body) !void {
        for (body.instructions) |inst| {
            const maybe_result_id = try self.genInst(inst);
            if (maybe_result_id) |result_id|
                try self.values.putNoClobber(inst, result_id);
        }
    }

    fn genInst(self: *DeclGen, inst: *Inst) !?u32 {
        return switch (inst.tag) {
            .add, .addwrap => try self.genBinOp(inst.castTag(.add).?),
            .sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?),
            .mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?),
            .div => try self.genBinOp(inst.castTag(.div).?),
            .bit_and => try self.genBinOp(inst.castTag(.bit_and).?),
            .bit_or => try self.genBinOp(inst.castTag(.bit_or).?),
            .xor => try self.genBinOp(inst.castTag(.xor).?),
            .cmp_eq => try self.genBinOp(inst.castTag(.cmp_eq).?),
            .cmp_neq => try self.genBinOp(inst.castTag(.cmp_neq).?),
            .cmp_gt => try self.genBinOp(inst.castTag(.cmp_gt).?),
            .cmp_gte => try self.genBinOp(inst.castTag(.cmp_gte).?),
            .cmp_lt => try self.genBinOp(inst.castTag(.cmp_lt).?),
            .cmp_lte => try self.genBinOp(inst.castTag(.cmp_lte).?),
            .bool_and => try self.genBinOp(inst.castTag(.bool_and).?),
            .bool_or => try self.genBinOp(inst.castTag(.bool_or).?),
            .not => try self.genUnOp(inst.castTag(.not).?),
            .arg => self.genArg(),
            // TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them
            // throughout the IR.
            .breakpoint => null,
            .dbg_stmt => null,
            .ret => self.genRet(inst.castTag(.ret).?),
            .retvoid => self.genRetVoid(),
            .unreach => self.genUnreach(),
            else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement inst {}", .{inst.tag}),
        };
    }

    fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !u32 {
        // TODO: Will lhs and rhs have the same type?
        const lhs_id = try self.resolve(inst.lhs);
        const rhs_id = try self.resolve(inst.rhs);

        const result_id = self.spv.allocResultId();
        const result_type_id = try self.getOrGenType(inst.base.ty);

        // TODO: Is the result the same as the argument types?
        // This is supposed to be the case for SPIR-V.
        std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
        std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty));

        // Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float
        // versions of operations require different opcodes.
        // For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand
        // instead.
        const info = try self.arithmeticTypeInfo(inst.lhs.ty);

        if (info.class == .composite_integer)
            return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: binary operations for composite integers", .{});

        const is_bool = info.class == .bool;
        const is_float = info.class == .float;
        const is_signed = info.signedness == .signed;
        // **Note**: All these operations must be valid for vectors of floats, integers and bools as well!
        // For floating points, we generally want ordered operations (which return false if either operand is nan).
        const opcode = switch (inst.base.tag) {
            // The regular integer operations are all defined for wrapping. Since theyre only relevant for integers,
            // we can just switch on both cases here.
            .add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd,
            .sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub,
            .mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul,
            // TODO: Trap if divisor is 0?
            // TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful.
            //  => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those.
            //  => TODO: Figure out how those work on the SPIR-V side.
            //  => TODO: Test these.
            .div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv,
            // Only integer versions for these.
            .bit_and => Opcode.OpBitwiseAnd,
            .bit_or => Opcode.OpBitwiseOr,
            .xor => Opcode.OpBitwiseXor,
            // Int/bool/float -> bool operations.
            .cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
            .cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
            // Int/float -> bool operations.
            // TODO: Verify that these OpFOrd type operations produce the right value.
            // TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
            .cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
            .cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
            .cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
            .cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
            // Bool -> bool operations.
            .bool_and => Opcode.OpLogicalAnd,
            .bool_or => Opcode.OpLogicalOr,
            else => unreachable,
        };

        try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, lhs_id, rhs_id });

        // TODO: Trap on overflow? Probably going to be annoying.
        // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.

        if (info.class != .strange_integer)
            return result_id;

        return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: strange integer operation mask", .{});
    }

    fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !u32 {
        const operand_id = try self.resolve(inst.operand);

        const result_id = self.spv.allocResultId();
        const result_type_id = try self.getOrGenType(inst.base.ty);

        const info = try self.arithmeticTypeInfo(inst.operand.ty);

        const opcode = switch (inst.base.tag) {
            // Bool -> bool
            .not => Opcode.OpLogicalNot,
            else => unreachable,
        };

        try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, operand_id });

        return result_id;
    }

    fn genArg(self: *DeclGen) u32 {
        defer self.next_arg_index += 1;
        return self.args.items[self.next_arg_index];
    }

    fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?u32 {
        const operand_id = try self.resolve(inst.operand);
        // TODO: This instruction needs to be the last in a block. Is that guaranteed?
        try writeInstruction(&self.spv.fn_decls, .OpReturnValue, &[_]u32{operand_id});
        return null;
    }

    fn genRetVoid(self: *DeclGen) !?u32 {
        // TODO: This instruction needs to be the last in a block. Is that guaranteed?
        try writeInstruction(&self.spv.fn_decls, .OpReturn, &[_]u32{});
        return null;
    }

    fn genUnreach(self: *DeclGen) !?u32 {
        // TODO: This instruction needs to be the last in a block. Is that guaranteed?
        try writeInstruction(&self.spv.fn_decls, .OpUnreachable, &[_]u32{});
        return null;
    }
};