const std = @import("std"); const Allocator = std.mem.Allocator; const Target = std.Target; const log = std.log.scoped(.codegen); const spec = @import("spirv/spec.zig"); const Opcode = spec.Opcode; const Module = @import("../Module.zig"); const Decl = Module.Decl; const Type = @import("../type.zig").Type; const Value = @import("../value.zig").Value; const LazySrcLoc = Module.LazySrcLoc; const ir = @import("../ir.zig"); const Inst = ir.Inst; pub const TypeMap = std.HashMap(Type, u32, Type.hash, Type.eql, std.hash_map.default_max_load_percentage); pub const ValueMap = std.AutoHashMap(*Inst, u32); pub fn writeOpcode(code: *std.ArrayList(u32), opcode: Opcode, arg_count: u32) !void { const word_count = arg_count + 1; try code.append((word_count << 16) | @enumToInt(opcode)); } pub fn writeInstruction(code: *std.ArrayList(u32), opcode: Opcode, args: []const u32) !void { try writeOpcode(code, opcode, @intCast(u32, args.len)); try code.appendSlice(args); } /// This structure represents a SPIR-V binary module being compiled, and keeps track of relevant information /// such as code for the different logical sections, and the next result-id. pub const SPIRVModule = struct { next_result_id: u32, types_globals_constants: std.ArrayList(u32), fn_decls: std.ArrayList(u32), pub fn init(allocator: *Allocator) SPIRVModule { return .{ .next_result_id = 1, // 0 is an invalid SPIR-V result ID. .types_globals_constants = std.ArrayList(u32).init(allocator), .fn_decls = std.ArrayList(u32).init(allocator), }; } pub fn deinit(self: *SPIRVModule) void { self.types_globals_constants.deinit(); self.fn_decls.deinit(); } pub fn allocResultId(self: *SPIRVModule) u32 { defer self.next_result_id += 1; return self.next_result_id; } pub fn resultIdBound(self: *SPIRVModule) u32 { return self.next_result_id; } }; /// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that. pub const DeclGen = struct { module: *Module, spv: *SPIRVModule, args: std.ArrayList(u32), next_arg_index: u32, types: TypeMap, values: ValueMap, decl: *Decl, error_msg: ?*Module.ErrorMsg, const Error = error{ AnalysisFail, OutOfMemory }; /// This structure is used to return information about a type typically used for arithmetic operations. /// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors, /// so we can easily represent those as arithmetic types. /// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers /// to the vector's element type. const ArithmeticTypeInfo = struct { /// A classification of the inner type. const Class = enum { /// A boolean. bool, /// A regular, **native**, integer. /// This is only returned when the backend supports this int as a native type (when /// the relevant capability is enabled). integer, /// A regular float. These are all required to be natively supported. Floating points for /// which the relevant capability is not enabled are not emulated. float, /// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this /// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still /// within the limits of the largest natively supported integer type. strange_integer, /// An integer with more bits than the largest natively supported integer type. composite_integer, }; /// The number of bits in the inner type. /// Note: this is the actual number of bits of the type, not the size of the backing integer. bits: u16, /// Whether the type is a vector. is_vector: bool, /// Whether the inner type is signed. Only relevant for integers. signedness: std.builtin.Signedness, /// A classification of the inner type. These scenarios /// will all have to be handled slightly different. class: Class, }; fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error { @setCold(true); const src_loc = src.toSrcLocWithDecl(self.decl); self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args); return error.AnalysisFail; } fn resolve(self: *DeclGen, inst: *Inst) !u32 { if (inst.value()) |val| { return self.genConstant(inst.ty, val); } return self.values.get(inst).?; // Instruction does not dominate all uses! } /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign /// included), the width of the underlying type which represents it, given the enabled features for the current target. /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using /// that size. In this case, multiple elements of the largest type should be used. /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits. /// The result is valid to be used with OpTypeInt. /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers). /// TODO: Should the result of this function be cached? fn backingIntBits(self: *DeclGen, bits: u16) ?u16 { const target = self.module.getTarget(); // TODO: Figure out what to do with u0/i0. std.debug.assert(bits != 0); // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively. // 32-bit integers are always supported (see spec, 2.16.1, Data rules). const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{ .{ .bits = 8, .feature = .Int8 }, .{ .bits = 16, .feature = .Int16 }, .{ .bits = 32, .feature = null }, .{ .bits = 64, .feature = .Int64 }, }; for (ints) |int| { const has_feature = if (int.feature) |feature| Target.spirv.featureSetHas(target.cpu.features, feature) else true; if (bits <= int.bits and has_feature) { return int.bits; } } return null; } /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if /// the Int64 capability is enabled). /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there /// is no way of knowing whether those are actually supported. /// TODO: Maybe this should be cached? fn largestSupportedIntBits(self: *DeclGen) u16 { const target = self.module.getTarget(); return if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32; } /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by /// arrays of largestSupportedIntBits(). /// Asserts `ty` is an integer. fn isCompositeInt(self: *DeclGen, ty: Type) bool { return self.backingIntBits(ty) == null; } fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo { const target = self.module.getTarget(); return switch (ty.zigTypeTag()) { .Bool => ArithmeticTypeInfo{ .bits = 1, // Doesn't matter for this class. .is_vector = false, .signedness = .unsigned, // Technically, but doesn't matter for this class. .class = .bool, }, .Float => ArithmeticTypeInfo{ .bits = ty.floatBits(target), .is_vector = false, .signedness = .signed, // Technically, but doesn't matter for this class. .class = .float, }, .Int => blk: { const int_info = ty.intInfo(target); // TODO: Maybe it's useful to also return this value. const maybe_backing_bits = self.backingIntBits(int_info.bits); break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits| if (backing_bits == int_info.bits) ArithmeticTypeInfo.Class.integer else ArithmeticTypeInfo.Class.strange_integer else .composite_integer }; }, // As of yet, there is no vector support in the self-hosted compiler. .Vector => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}), // TODO: For which types is this the case? else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}), }; } /// Generate a constant representing `val`. /// TODO: Deduplication? fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!u32 { const code = &self.spv.types_globals_constants; const result_id = self.spv.allocResultId(); const result_type_id = try self.getOrGenType(ty); if (val.isUndef()) { try writeInstruction(code, .OpUndef, &[_]u32{ result_type_id, result_id }); return result_id; } switch (ty.zigTypeTag()) { .Bool => { const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse; try writeInstruction(code, opcode, &[_]u32{ result_type_id, result_id }); }, .Float => { // At this point we are guaranteed that the target floating point type is supported, otherwise the function // would have exited at getOrGenType(ty). // f16 and f32 require one word of storage. f64 requires 2, low-order first. switch (val.tag()) { .float_16 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u16, val.castTag(.float_16).?.data) }), .float_32 => try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @bitCast(u32, val.castTag(.float_32).?.data) }), .float_64 => { const float_bits = @bitCast(u64, val.castTag(.float_64).?.data); try writeInstruction(code, .OpConstant, &[_]u32{ result_type_id, result_id, @truncate(u32, float_bits), @truncate(u32, float_bits >> 32), }); }, .float_128 => unreachable, // Filtered out in the call to getOrGenType. // TODO: What tags do we need to handle here anyway? else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: float constant generation of value {s}\n", .{val.tag()}), } }, else => return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ty.zigTypeTag()}), } return result_id; } fn getOrGenType(self: *DeclGen, ty: Type) Error!u32 { // We can't use getOrPut here so we can recursively generate types. if (self.types.get(ty)) |already_generated| { return already_generated; } const target = self.module.getTarget(); const code = &self.spv.types_globals_constants; const result_id = self.spv.allocResultId(); switch (ty.zigTypeTag()) { .Void => try writeInstruction(code, .OpTypeVoid, &[_]u32{result_id}), .Bool => try writeInstruction(code, .OpTypeBool, &[_]u32{result_id}), .Int => { const int_info = ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits. return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement composite ints {}", .{ty}); }; // TODO: If backing_bits != int_info.bits, a duplicate type might be generated here. try writeInstruction(code, .OpTypeInt, &[_]u32{ result_id, backing_bits, switch (int_info.signedness) { .unsigned => 0, .signed => 1, }, }); }, .Float => { // We can (and want) not really emulate floating points with other floating point types like with the integer types, // so if the float is not supported, just return an error. const bits = ty.floatBits(target); const supported = switch (bits) { 16 => Target.spirv.featureSetHas(target.cpu.features, .Float16), // 32-bit floats are always supported (see spec, 2.16.1, Data rules). 32 => true, 64 => Target.spirv.featureSetHas(target.cpu.features, .Float64), else => false, }; if (!supported) { return self.fail(.{ .node_offset = 0 }, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits}); } try writeInstruction(code, .OpTypeFloat, &[_]u32{ result_id, bits }); }, .Fn => { // We only support zig-calling-convention functions, no varargs. if (ty.fnCallingConvention() != .Unspecified) return self.fail(.{ .node_offset = 0 }, "Unsupported calling convention for SPIR-V", .{}); if (ty.fnIsVarArgs()) return self.fail(.{ .node_offset = 0 }, "VarArgs unsupported for SPIR-V", .{}); // In order to avoid a temporary here, first generate all the required types and then simply look them up // when generating the function type. const params = ty.fnParamLen(); var i: usize = 0; while (i < params) : (i += 1) { _ = try self.getOrGenType(ty.fnParamType(i)); } const return_type_id = try self.getOrGenType(ty.fnReturnType()); // result id + result type id + parameter type ids. try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u32, ty.fnParamLen())); try code.appendSlice(&.{ result_id, return_type_id }); i = 0; while (i < params) : (i += 1) { const param_type_id = self.types.get(ty.fnParamType(i)).?; try code.append(param_type_id); } }, .Vector => { // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations // which work on them), so simply use those. // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way. // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors. // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector // is adequate at all for this. // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems. return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type Vector", .{}); }, .Null, .Undefined, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Type, => unreachable, // Must be const or comptime. .BoundFn => unreachable, // this type will be deleted from the language. else => |tag| return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement type {}s", .{tag}), } try self.types.putNoClobber(ty, result_id); return result_id; } pub fn gen(self: *DeclGen) !void { const decl = self.decl; const result_id = decl.fn_link.spirv.id; if (decl.val.castTag(.function)) |func_payload| { std.debug.assert(decl.ty.zigTypeTag() == .Fn); const prototype_id = try self.getOrGenType(decl.ty); try writeInstruction(&self.spv.fn_decls, .OpFunction, &[_]u32{ self.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype. result_id, @bitCast(u32, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it. prototype_id, }); const params = decl.ty.fnParamLen(); var i: usize = 0; try self.args.ensureCapacity(params); while (i < params) : (i += 1) { const param_type_id = self.types.get(decl.ty.fnParamType(i)).?; const arg_result_id = self.spv.allocResultId(); try writeInstruction(&self.spv.fn_decls, .OpFunctionParameter, &[_]u32{ param_type_id, arg_result_id }); self.args.appendAssumeCapacity(arg_result_id); } // TODO: This could probably be done in a better way... const root_block_id = self.spv.allocResultId(); _ = try writeInstruction(&self.spv.fn_decls, .OpLabel, &[_]u32{root_block_id}); try self.genBody(func_payload.data.body); try writeInstruction(&self.spv.fn_decls, .OpFunctionEnd, &[_]u32{}); } else { return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()}); } } fn genBody(self: *DeclGen, body: ir.Body) !void { for (body.instructions) |inst| { const maybe_result_id = try self.genInst(inst); if (maybe_result_id) |result_id| try self.values.putNoClobber(inst, result_id); } } fn genInst(self: *DeclGen, inst: *Inst) !?u32 { return switch (inst.tag) { .add, .addwrap => try self.genBinOp(inst.castTag(.add).?), .sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?), .mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?), .div => try self.genBinOp(inst.castTag(.div).?), .bit_and => try self.genBinOp(inst.castTag(.bit_and).?), .bit_or => try self.genBinOp(inst.castTag(.bit_or).?), .xor => try self.genBinOp(inst.castTag(.xor).?), .cmp_eq => try self.genBinOp(inst.castTag(.cmp_eq).?), .cmp_neq => try self.genBinOp(inst.castTag(.cmp_neq).?), .cmp_gt => try self.genBinOp(inst.castTag(.cmp_gt).?), .cmp_gte => try self.genBinOp(inst.castTag(.cmp_gte).?), .cmp_lt => try self.genBinOp(inst.castTag(.cmp_lt).?), .cmp_lte => try self.genBinOp(inst.castTag(.cmp_lte).?), .bool_and => try self.genBinOp(inst.castTag(.bool_and).?), .bool_or => try self.genBinOp(inst.castTag(.bool_or).?), .not => try self.genUnOp(inst.castTag(.not).?), .arg => self.genArg(), // TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them // throughout the IR. .breakpoint => null, .dbg_stmt => null, .ret => self.genRet(inst.castTag(.ret).?), .retvoid => self.genRetVoid(), .unreach => self.genUnreach(), else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement inst {}", .{inst.tag}), }; } fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !u32 { // TODO: Will lhs and rhs have the same type? const lhs_id = try self.resolve(inst.lhs); const rhs_id = try self.resolve(inst.rhs); const result_id = self.spv.allocResultId(); const result_type_id = try self.getOrGenType(inst.base.ty); // TODO: Is the result the same as the argument types? // This is supposed to be the case for SPIR-V. std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty)); std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty)); // Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float // versions of operations require different opcodes. // For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand // instead. const info = try self.arithmeticTypeInfo(inst.lhs.ty); if (info.class == .composite_integer) return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: binary operations for composite integers", .{}); const is_bool = info.class == .bool; const is_float = info.class == .float; const is_signed = info.signedness == .signed; // **Note**: All these operations must be valid for vectors of floats, integers and bools as well! // For floating points, we generally want ordered operations (which return false if either operand is nan). const opcode = switch (inst.base.tag) { // The regular integer operations are all defined for wrapping. Since theyre only relevant for integers, // we can just switch on both cases here. .add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd, .sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub, .mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul, // TODO: Trap if divisor is 0? // TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful. // => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those. // => TODO: Figure out how those work on the SPIR-V side. // => TODO: Test these. .div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv, // Only integer versions for these. .bit_and => Opcode.OpBitwiseAnd, .bit_or => Opcode.OpBitwiseOr, .xor => Opcode.OpBitwiseXor, // Int/bool/float -> bool operations. .cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual, .cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual, // Int/float -> bool operations. // TODO: Verify that these OpFOrd type operations produce the right value. // TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type? .cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan, .cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual, .cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan, .cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual, // Bool -> bool operations. .bool_and => Opcode.OpLogicalAnd, .bool_or => Opcode.OpLogicalOr, else => unreachable, }; try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, lhs_id, rhs_id }); // TODO: Trap on overflow? Probably going to be annoying. // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap. if (info.class != .strange_integer) return result_id; return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: strange integer operation mask", .{}); } fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !u32 { const operand_id = try self.resolve(inst.operand); const result_id = self.spv.allocResultId(); const result_type_id = try self.getOrGenType(inst.base.ty); const info = try self.arithmeticTypeInfo(inst.operand.ty); const opcode = switch (inst.base.tag) { // Bool -> bool .not => Opcode.OpLogicalNot, else => unreachable, }; try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, operand_id }); return result_id; } fn genArg(self: *DeclGen) u32 { defer self.next_arg_index += 1; return self.args.items[self.next_arg_index]; } fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?u32 { const operand_id = try self.resolve(inst.operand); // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.spv.fn_decls, .OpReturnValue, &[_]u32{operand_id}); return null; } fn genRetVoid(self: *DeclGen) !?u32 { // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.spv.fn_decls, .OpReturn, &[_]u32{}); return null; } fn genUnreach(self: *DeclGen) !?u32 { // TODO: This instruction needs to be the last in a block. Is that guaranteed? try writeInstruction(&self.spv.fn_decls, .OpUnreachable, &[_]u32{}); return null; } };