1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
const builtin = @import("builtin");
const std = @import("std");
const Io = std.Io;
const Allocator = std.mem.Allocator;
pub fn main() anyerror!void {
var debug_alloc_inst: std.heap.DebugAllocator(.{}) = .init;
defer std.debug.assert(debug_alloc_inst.deinit() == .ok);
const gpa = debug_alloc_inst.allocator();
var threaded: Io.Threaded = .init(gpa, .{});
defer threaded.deinit();
const io = threaded.io();
var it = try std.process.argsWithAllocator(gpa);
defer it.deinit();
_ = it.next() orelse unreachable; // skip binary name
const child_exe_path_orig = it.next() orelse unreachable;
const iterations: u64 = iterations: {
const arg = it.next() orelse "0";
break :iterations try std.fmt.parseUnsigned(u64, arg, 10);
};
var rand_seed = false;
const seed: u64 = seed: {
const seed_arg = it.next() orelse {
rand_seed = true;
var buf: [8]u8 = undefined;
try std.posix.getrandom(&buf);
break :seed std.mem.readInt(u64, &buf, builtin.cpu.arch.endian());
};
break :seed try std.fmt.parseUnsigned(u64, seed_arg, 10);
};
var random = std.Random.DefaultPrng.init(seed);
const rand = random.random();
// If the seed was not given via the CLI, then output the
// randomly chosen seed so that this run can be reproduced
if (rand_seed) {
std.debug.print("rand seed: {}\n", .{seed});
}
var tmp = tmpDir(io, .{});
defer tmp.cleanup(io);
try std.process.setCurrentDir(io, tmp.dir);
defer std.process.setCurrentDir(io, tmp.parent_dir) catch {};
// `child_exe_path_orig` might be relative; make it relative to our new cwd.
const child_exe_path = try std.fs.path.resolve(gpa, &.{ "..\\..\\..", child_exe_path_orig });
defer gpa.free(child_exe_path);
var buf: std.ArrayList(u8) = .empty;
defer buf.deinit(gpa);
try buf.print(gpa,
\\@echo off
\\"{s}"
, .{child_exe_path});
// Trailing newline intentionally omitted above so we can add args.
const preamble_len = buf.items.len;
try buf.appendSlice(gpa, " %*");
try tmp.dir.writeFile(io, .{ .sub_path = "args1.bat", .data = buf.items });
buf.shrinkRetainingCapacity(preamble_len);
try buf.appendSlice(gpa, " %1 %2 %3 %4 %5 %6 %7 %8 %9");
try tmp.dir.writeFile(io, .{ .sub_path = "args2.bat", .data = buf.items });
buf.shrinkRetainingCapacity(preamble_len);
try buf.appendSlice(gpa, " \"%~1\" \"%~2\" \"%~3\" \"%~4\" \"%~5\" \"%~6\" \"%~7\" \"%~8\" \"%~9\"");
try tmp.dir.writeFile(io, .{ .sub_path = "args3.bat", .data = buf.items });
buf.shrinkRetainingCapacity(preamble_len);
var i: u64 = 0;
while (iterations == 0 or i < iterations) {
const rand_arg = try randomArg(gpa, rand);
defer gpa.free(rand_arg);
try testExec(gpa, io, &.{rand_arg}, null);
i += 1;
}
}
fn testExec(gpa: Allocator, io: Io, args: []const []const u8, env: ?*std.process.EnvMap) !void {
try testExecBat(gpa, io, "args1.bat", args, env);
try testExecBat(gpa, io, "args2.bat", args, env);
try testExecBat(gpa, io, "args3.bat", args, env);
}
fn testExecBat(gpa: Allocator, io: Io, bat: []const u8, args: []const []const u8, env: ?*std.process.EnvMap) !void {
const argv = try gpa.alloc([]const u8, 1 + args.len);
defer gpa.free(argv);
argv[0] = bat;
@memcpy(argv[1..], args);
const can_have_trailing_empty_args = std.mem.eql(u8, bat, "args3.bat");
const result = try std.process.Child.run(gpa, io, .{
.env_map = env,
.argv = argv,
});
defer gpa.free(result.stdout);
defer gpa.free(result.stderr);
try std.testing.expectEqualStrings("", result.stderr);
var it = std.mem.splitScalar(u8, result.stdout, '\x00');
var i: usize = 0;
while (it.next()) |actual_arg| {
if (i >= args.len and can_have_trailing_empty_args) {
try std.testing.expectEqualStrings("", actual_arg);
continue;
}
const expected_arg = args[i];
try std.testing.expectEqualSlices(u8, expected_arg, actual_arg);
i += 1;
}
}
fn randomArg(gpa: Allocator, rand: std.Random) ![]const u8 {
const Choice = enum {
backslash,
quote,
space,
control,
printable,
surrogate_half,
non_ascii,
};
const choices = rand.uintAtMostBiased(u16, 256);
var buf: std.ArrayList(u8) = try .initCapacity(gpa, choices);
errdefer buf.deinit(gpa);
var last_codepoint: u21 = 0;
for (0..choices) |_| {
const choice = rand.enumValue(Choice);
const codepoint: u21 = switch (choice) {
.backslash => '\\',
.quote => '"',
.space => ' ',
.control => switch (rand.uintAtMostBiased(u8, 0x21)) {
// NUL/CR/LF can't roundtrip
'\x00', '\r', '\n' => ' ',
0x21 => '\x7F',
else => |b| b,
},
.printable => '!' + rand.uintAtMostBiased(u8, '~' - '!'),
.surrogate_half => rand.intRangeAtMostBiased(u16, 0xD800, 0xDFFF),
.non_ascii => rand.intRangeAtMostBiased(u21, 0x80, 0x10FFFF),
};
// Ensure that we always return well-formed WTF-8.
// Instead of concatenating to ensure well-formed WTF-8,
// we just skip encoding the low surrogate.
if (std.unicode.isSurrogateCodepoint(last_codepoint) and std.unicode.isSurrogateCodepoint(codepoint)) {
if (std.unicode.utf16IsHighSurrogate(@intCast(last_codepoint)) and std.unicode.utf16IsLowSurrogate(@intCast(codepoint))) {
continue;
}
}
try buf.ensureUnusedCapacity(gpa, 4);
const unused_slice = buf.unusedCapacitySlice();
const len = std.unicode.wtf8Encode(codepoint, unused_slice) catch unreachable;
buf.items.len += len;
last_codepoint = codepoint;
}
return buf.toOwnedSlice(gpa);
}
pub fn tmpDir(io: Io, opts: Io.Dir.OpenOptions) TmpDir {
var random_bytes: [TmpDir.random_bytes_count]u8 = undefined;
std.crypto.random.bytes(&random_bytes);
var sub_path: [TmpDir.sub_path_len]u8 = undefined;
_ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);
const cwd = Io.Dir.cwd();
var cache_dir = cwd.createDirPathOpen(io, ".zig-cache", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open .zig-cache dir");
defer cache_dir.close(io);
const parent_dir = cache_dir.createDirPathOpen(io, "tmp", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open .zig-cache/tmp dir");
const dir = parent_dir.createDirPathOpen(io, &sub_path, .{ .open_options = opts }) catch
@panic("unable to make tmp dir for testing: unable to make and open the tmp dir");
return .{
.dir = dir,
.parent_dir = parent_dir,
.sub_path = sub_path,
};
}
pub const TmpDir = struct {
dir: Io.Dir,
parent_dir: Io.Dir,
sub_path: [sub_path_len]u8,
const random_bytes_count = 12;
const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);
pub fn cleanup(self: *TmpDir, io: Io) void {
self.dir.close(io);
self.parent_dir.deleteTree(io, &self.sub_path) catch {};
self.parent_dir.close(io);
self.* = undefined;
}
};
|