1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
// This is Zig's multi-target implementation of libc.
// When builtin.link_libc is true, we need to export all the functions and
// provide an entire C API.
// Otherwise, only the functions which LLVM generates calls to need to be generated,
// such as memcpy, memset, and some math functions.
const std = @import("std");
const builtin = @import("builtin");
const maxInt = std.math.maxInt;
const is_wasm = switch (builtin.arch) {
.wasm32, .wasm64 => true,
else => false,
};
const is_freestanding = switch (builtin.os) {
.freestanding => true,
else => false,
};
comptime {
if (is_freestanding and is_wasm and builtin.link_libc) {
@export("_start", wasm_start, .Strong);
}
if (builtin.link_libc) {
@export("strcmp", strcmp, .Strong);
@export("strncmp", strncmp, .Strong);
@export("strerror", strerror, .Strong);
@export("strlen", strlen, .Strong);
}
}
extern fn main(argc: c_int, argv: [*][*]u8) c_int;
extern fn wasm_start() void {
_ = main(0, undefined);
}
extern fn strcmp(s1: [*]const u8, s2: [*]const u8) c_int {
return std.cstr.cmp(s1, s2);
}
extern fn strlen(s: [*]const u8) usize {
return std.mem.len(u8, s);
}
extern fn strncmp(_l: [*]const u8, _r: [*]const u8, _n: usize) c_int {
if (_n == 0) return 0;
var l = _l;
var r = _r;
var n = _n - 1;
while (l[0] != 0 and r[0] != 0 and n != 0 and l[0] == r[0]) {
l += 1;
r += 1;
n -= 1;
}
return c_int(l[0]) - c_int(r[0]);
}
extern fn strerror(errnum: c_int) [*]const u8 {
return c"TODO strerror implementation";
}
test "strncmp" {
std.testing.expect(strncmp(c"a", c"b", 1) == -1);
std.testing.expect(strncmp(c"a", c"c", 1) == -2);
std.testing.expect(strncmp(c"b", c"a", 1) == 1);
std.testing.expect(strncmp(c"\xff", c"\x02", 1) == 253);
}
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test this file.
pub fn panic(msg: []const u8, error_return_trace: ?*builtin.StackTrace) noreturn {
if (builtin.is_test) {
@setCold(true);
std.debug.panic("{}", msg);
} else {
unreachable;
}
}
export fn memset(dest: ?[*]u8, c: u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = c;
return dest;
}
export fn memcpy(noalias dest: ?[*]u8, noalias src: ?[*]const u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = src.?[index];
return dest;
}
export fn memmove(dest: ?[*]u8, src: ?[*]const u8, n: usize) ?[*]u8 {
@setRuntimeSafety(false);
if (@ptrToInt(dest) < @ptrToInt(src)) {
var index: usize = 0;
while (index != n) : (index += 1) {
dest.?[index] = src.?[index];
}
} else {
var index = n;
while (index != 0) {
index -= 1;
dest.?[index] = src.?[index];
}
}
return dest;
}
export fn memcmp(vl: ?[*]const u8, vr: ?[*]const u8, n: usize) isize {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
const compare_val = @bitCast(i8, vl.?[index] -% vr.?[index]);
if (compare_val != 0) {
return compare_val;
}
}
return 0;
}
test "test_memcmp" {
const base_arr = []u8{ 1, 1, 1 };
const arr1 = []u8{ 1, 1, 1 };
const arr2 = []u8{ 1, 0, 1 };
const arr3 = []u8{ 1, 2, 1 };
std.testing.expect(memcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0);
std.testing.expect(memcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) > 0);
std.testing.expect(memcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) < 0);
}
export fn bcmp(vl: [*]allowzero const u8, vr: [*]allowzero const u8, n: usize) isize {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
if (vl[index] != vr[index]) {
return 1;
}
}
return 0;
}
test "test_bcmp" {
const base_arr = []u8{ 1, 1, 1 };
const arr1 = []u8{ 1, 1, 1 };
const arr2 = []u8{ 1, 0, 1 };
const arr3 = []u8{ 1, 2, 1 };
std.testing.expect(bcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0);
std.testing.expect(bcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) != 0);
std.testing.expect(bcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) != 0);
}
comptime {
if (builtin.mode != builtin.Mode.ReleaseFast and
builtin.mode != builtin.Mode.ReleaseSmall and
builtin.os != builtin.Os.windows)
{
@export("__stack_chk_fail", __stack_chk_fail, builtin.GlobalLinkage.Strong);
}
if (builtin.os == builtin.Os.linux) {
@export("clone", clone, builtin.GlobalLinkage.Strong);
}
}
extern fn __stack_chk_fail() noreturn {
@panic("stack smashing detected");
}
// TODO we should be able to put this directly in std/linux/x86_64.zig but
// it causes a segfault in release mode. this is a workaround of calling it
// across .o file boundaries. fix comptime @ptrCast of nakedcc functions.
nakedcc fn clone() void {
if (builtin.arch == builtin.Arch.x86_64) {
asm volatile (
\\ xor %%eax,%%eax
\\ mov $56,%%al // SYS_clone
\\ mov %%rdi,%%r11
\\ mov %%rdx,%%rdi
\\ mov %%r8,%%rdx
\\ mov %%r9,%%r8
\\ mov 8(%%rsp),%%r10
\\ mov %%r11,%%r9
\\ and $-16,%%rsi
\\ sub $8,%%rsi
\\ mov %%rcx,(%%rsi)
\\ syscall
\\ test %%eax,%%eax
\\ jnz 1f
\\ xor %%ebp,%%ebp
\\ pop %%rdi
\\ call *%%r9
\\ mov %%eax,%%edi
\\ xor %%eax,%%eax
\\ mov $60,%%al // SYS_exit
\\ syscall
\\ hlt
\\1: ret
\\
);
} else if (builtin.arch == builtin.Arch.aarch64) {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// x0, x1, w2, x3, x4, x5, x6
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// x8, x0, x1, x2, x3, x4
asm volatile (
\\ // align stack and save func,arg
\\ and x1,x1,#-16
\\ stp x0,x3,[x1,#-16]!
\\
\\ // syscall
\\ uxtw x0,w2
\\ mov x2,x4
\\ mov x3,x5
\\ mov x4,x6
\\ mov x8,#220 // SYS_clone
\\ svc #0
\\
\\ cbz x0,1f
\\ // parent
\\ ret
\\ // child
\\1: ldp x1,x0,[sp],#16
\\ blr x1
\\ mov x8,#93 // SYS_exit
\\ svc #0
);
} else {
@compileError("Implement clone() for this arch.");
}
}
const math = std.math;
export fn fmodf(x: f32, y: f32) f32 {
return generic_fmod(f32, x, y);
}
export fn fmod(x: f64, y: f64) f64 {
return generic_fmod(f64, x, y);
}
// TODO add intrinsics for these (and probably the double version too)
// and have the math stuff use the intrinsic. same as @mod and @rem
export fn floorf(x: f32) f32 {
return math.floor(x);
}
export fn ceilf(x: f32) f32 {
return math.ceil(x);
}
export fn floor(x: f64) f64 {
return math.floor(x);
}
export fn ceil(x: f64) f64 {
return math.ceil(x);
}
fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false);
const uint = @IntType(false, T.bit_count);
const log2uint = math.Log2Int(uint);
const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = T.bit_count - 1;
const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y);
var ex = @intCast(i32, (ux >> digits) & mask);
var ey = @intCast(i32, (uy >> digits) & mask);
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
var i: uint = undefined;
if (uy << 1 == 0 or isNan(uint, uy) or ex == mask)
return (x * y) / (x * y);
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1)
return 0 * x;
return x;
}
// normalize x and y
if (ex == 0) {
i = ux << exp_bits;
while (i >> bits_minus_1 == 0) : (b: {
ex -= 1;
i <<= 1;
}) {}
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
} else {
ux &= maxInt(uint) >> exp_bits;
ux |= 1 << digits;
}
if (ey == 0) {
i = uy << exp_bits;
while (i >> bits_minus_1 == 0) : (b: {
ey -= 1;
i <<= 1;
}) {}
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
} else {
uy &= maxInt(uint) >> exp_bits;
uy |= 1 << digits;
}
// x mod y
while (ex > ey) : (ex -= 1) {
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
ux <<= 1;
}
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
while (ux >> digits == 0) : (b: {
ux <<= 1;
ex -= 1;
}) {}
// scale result up
if (ex > 0) {
ux -%= 1 << digits;
ux |= uint(@bitCast(u32, ex)) << digits;
} else {
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
}
if (T == f32) {
ux |= sx;
} else {
ux |= @intCast(uint, sx) << bits_minus_1;
}
return @bitCast(T, ux);
}
fn isNan(comptime T: type, bits: T) bool {
if (T == u16) {
return (bits & 0x7fff) > 0x7c00;
} else if (T == u32) {
return (bits & 0x7fffffff) > 0x7f800000;
} else if (T == u64) {
return (bits & (maxInt(u64) >> 1)) > (u64(0x7ff) << 52);
} else {
unreachable;
}
}
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
// potentially some edge cases remaining that are not handled in the same way.
export fn sqrt(x: f64) f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = @intCast(u32, u >> 32);
var ix1 = @intCast(u32, u & 0xFFFFFFFF);
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = @intCast(i32, ix0 >> 20);
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= @intCast(i32, i) - 1;
ix0 |= ix1 >> @intCast(u5, 32 - i);
ix1 <<= @intCast(u5, i);
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t = s1 +% r;
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
var z = 1.0 - tiny; // raise inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = @intCast(i32, ix0);
iix0 = iix0 +% (m << 20);
const uz = (@intCast(u64, iix0) << 32) | ix1;
return @bitCast(f64, uz);
}
export fn sqrtf(x: f32) f32 {
const tiny: f32 = 1.0e-30;
const sign: i32 = @bitCast(i32, u32(0x80000000));
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
return x; // sqrt (+-0) = +-0
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
m -= 127; // unbias exponent
ix = (ix & 0x007FFFFF) | 0x00800000;
if (m & 1 != 0) { // odd m, double x to even
ix += ix;
}
m >>= 1; // m = [m / 2]
// sqrt(x) bit by bit
ix += ix;
var q: i32 = 0; // q = sqrt(x)
var s: i32 = 0;
var r: i32 = 0x01000000; // r = moving bit right -> left
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
var z = 1.0 - tiny; // inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
|