aboutsummaryrefslogtreecommitdiff
path: root/std/rand/index.zig
blob: 6a746fce92db0357d7ee0a242ff59f1c1af92529 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// The engines provided here should be initialized from an external source. For now, getRandomBytes
// from the os package is the most suitable. Be sure to use a CSPRNG when required, otherwise using
// a normal PRNG will be faster and use substantially less stack space.
//
// ```
// var buf: [8]u8 = undefined;
// try std.os.getRandomBytes(buf[0..]);
// const seed = mem.readInt(buf[0..8], u64, builtin.Endian.Little);
//
// var r = DefaultPrng.init(seed);
//
// const s = r.random.scalar(u64);
// ```
//
// TODO(tiehuis): Benchmark these against other reference implementations.

const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;

// When you need fast unbiased random numbers
pub const DefaultPrng = Xoroshiro128;

// When you need cryptographically secure random numbers
pub const DefaultCsprng = Isaac64;

pub const Random = struct {
    fillFn: fn(r: &Random, buf: []u8) void,

    /// Read random bytes into the specified buffer until fill.
    pub fn bytes(r: &Random, buf: []u8) void {
        r.fillFn(r, buf);
    }

    /// Return a random integer/boolean type.
    pub fn scalar(r: &Random, comptime T: type) T {
        var rand_bytes: [@sizeOf(T)]u8 = undefined;
        r.bytes(rand_bytes[0..]);

        if (T == bool) {
            return rand_bytes[0] & 0b1 == 0;
        } else {
            // NOTE: Cannot @bitCast array to integer type.
            return mem.readInt(rand_bytes, T, builtin.Endian.Little);
        }
    }

    /// Get a random unsigned integer with even distribution between `start`
    /// inclusive and `end` exclusive.
    pub fn range(r: &Random, comptime T: type, start: T, end: T) T {
        assert(start <= end);
        if (T.is_signed) {
            const uint = @IntType(false, T.bit_count);
            if (start >= 0 and end >= 0) {
                return T(r.range(uint, uint(start), uint(end)));
            } else if (start < 0 and end < 0) {
                // Can't overflow because the range is over signed ints
                return math.negateCast(r.range(uint, math.absCast(end), math.absCast(start)) + 1) catch unreachable;
            } else if (start < 0 and end >= 0) {
                const end_uint = uint(end);
                const total_range = math.absCast(start) + end_uint;
                const value = r.range(uint, 0, total_range);
                const result = if (value < end_uint) x: {
                    break :x T(value);
                } else if (value == end_uint) x: {
                    break :x start;
                } else x: {
                    // Can't overflow because the range is over signed ints
                   break :x math.negateCast(value - end_uint) catch unreachable;
                };
                return result;
            } else {
                unreachable;
            }
        } else {
            const total_range = end - start;
            const leftover = @maxValue(T) % total_range;
            const upper_bound = @maxValue(T) - leftover;
            var rand_val_array: [@sizeOf(T)]u8 = undefined;

            while (true) {
                r.bytes(rand_val_array[0..]);
                const rand_val = mem.readInt(rand_val_array, T, builtin.Endian.Little);
                if (rand_val < upper_bound) {
                    return start + (rand_val % total_range);
                }
            }
        }
    }

    /// Return a floating point value evenly distributed in the range [0, 1).
    pub fn float(r: &Random, comptime T: type) T {
        // Generate a uniform value between [1, 2) and scale down to [0, 1).
        // Note: The lowest mantissa bit is always set to 0 so we only use half the available range.
        switch (T) {
            f32 => {
                const s = r.scalar(u32);
                const repr = (0x7f << 23) | (s >> 9);
                return @bitCast(f32, repr) - 1.0;
            },
            f64 => {
                const s = r.scalar(u64);
                const repr = (0x3ff << 52) | (s >> 12);
                return @bitCast(f64, repr) - 1.0;
            },
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return a floating point value normally distributed in the range [0, 1].
    pub fn floatNorm(r: &Random, comptime T: type) T {
        // TODO(tiehuis): See https://www.doornik.com/research/ziggurat.pdf
        @compileError("floatNorm is unimplemented");
    }

    /// Return a exponentially distributed float between (0, @maxValue(f64))
    pub fn floatExp(r: &Random, comptime T: type) T {
        @compileError("floatExp is unimplemented");
    }

    /// Shuffle a slice into a random order.
    pub fn shuffle(r: &Random, comptime T: type, buf: []T) void {
        if (buf.len < 2) {
            return;
        }

        var i: usize = 0;
        while (i < buf.len - 1) : (i += 1) {
            const j = r.range(usize, i, buf.len);
            mem.swap(T, &buf[i], &buf[j]);
        }
    }
};

// Generator to extend 64-bit seed values into longer sequences.
//
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
// is still plenty for practical purposes.
const SplitMix64 = struct {
    s: u64,

    pub fn init(seed: u64) SplitMix64 {
        return SplitMix64 { .s = seed };
    }

    pub fn next(self: &SplitMix64) u64 {
        self.s +%= 0x9e3779b97f4a7c15;

        var z = self.s;
        z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
        z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
        return z ^ (z >> 31);
    }
};

test "splitmix64 sequence" {
    var r = SplitMix64.init(0xaeecf86f7878dd75);

    const seq = []const u64 {
        0x5dbd39db0178eb44,
        0xa9900fb66b397da3,
        0x5c1a28b1aeebcf5c,
        0x64a963238f776912,
        0xc6d4177b21d1c0ab,
        0xb2cbdbdb5ea35394,
    };

    for (seq) |s| {
        std.debug.assert(s == r.next());
    }
}

// PCG32 - http://www.pcg-random.org/
//
// PRNG
pub const Pcg = struct {
    const default_multiplier = 6364136223846793005;

    random: Random,

    s: u64,
    i: u64,

    pub fn init(init_s: u64) Pcg {
        var pcg = Pcg {
            .random = Random { .fillFn = fill },
            .s = undefined,
            .i = undefined,
        };

        pcg.seed(init_s);
        return pcg;
    }

    fn next(self: &Pcg) u32 {
        const l = self.s;
        self.s = l *% default_multiplier +% (self.i | 1);

        const xor_s = @truncate(u32, ((l >> 18) ^ l) >> 27);
        const rot = u32(l >> 59);

        return (xor_s >> u5(rot)) | (xor_s << u5((0 -% rot) & 31));
    }

    fn seed(self: &Pcg, init_s: u64) void {
        // Pcg requires 128-bits of seed.
        var gen = SplitMix64.init(init_s);
        self.seedTwo(gen.next(), gen.next());
    }

    fn seedTwo(self: &Pcg, init_s: u64, init_i: u64) void {
        self.s = 0;
        self.i = (init_s << 1) | 1;
        self.s = self.s *% default_multiplier +% self.i;
        self.s +%= init_i;
        self.s = self.s *% default_multiplier +% self.i;
    }

    fn fill(r: &Random, buf: []u8) void {
        const self = @fieldParentPtr(Pcg, "random", r);

        var i: usize = 0;
        const aligned_len = buf.len - (buf.len & 7);

        // Complete 4 byte segments.
        while (i < aligned_len) : (i += 4) {
            var n = self.next();
            comptime var j: usize = 0;
            inline while (j < 4) : (j += 1) {
                buf[i + j] = @truncate(u8, n);
                n >>= 8;
            }
        }

        // Remaining. (cuts the stream)
        if (i != buf.len) {
            var n = self.next();
            while (i < buf.len) : (i += 1) {
                buf[i] = @truncate(u8, n);
                n >>= 4;
            }
        }
    }
};

test "pcg sequence" {
    var r = Pcg.init(0);
    const s0: u64 = 0x9394bf54ce5d79de;
    const s1: u64 = 0x84e9c579ef59bbf7;
    r.seedTwo(s0, s1);

    const seq = []const u32 {
        2881561918,
        3063928540,
        1199791034,
        2487695858,
        1479648952,
        3247963454,
    };

    for (seq) |s| {
        std.debug.assert(s == r.next());
    }
}

// Xoroshiro128+ - http://xoroshiro.di.unimi.it/
//
// PRNG
pub const Xoroshiro128 = struct {
    random: Random,

    s: [2]u64,

    pub fn init(init_s: u64) Xoroshiro128 {
        var x = Xoroshiro128 {
            .random = Random { .fillFn = fill },
            .s = undefined,
        };

        x.seed(init_s);
        return x;
    }

    fn next(self: &Xoroshiro128) u64 {
        const s0 = self.s[0];
        var s1 = self.s[1];
        const r = s0 +% s1;

        s1 ^= s0;
        self.s[0] = math.rotl(u64, s0, u8(55)) ^ s1 ^ (s1 << 14);
        self.s[1] = math.rotl(u64, s1, u8(36));

        return r;
    }

    // Skip 2^64 places ahead in the sequence
    fn jump(self: &Xoroshiro128) void {
        var s0: u64 = 0;
        var s1: u64 = 0;

        const table = []const u64 {
            0xbeac0467eba5facb,
            0xd86b048b86aa9922
        };

        inline for (table) |entry| {
            var b: usize = 0;
            while (b < 64) : (b += 1) {
                if ((entry & (u64(1) << u6(b))) != 0) {
                    s0 ^= self.s[0];
                    s1 ^= self.s[1];
                }
                _ = self.next();
            }
        }

        self.s[0] = s0;
        self.s[1] = s1;
    }

    fn seed(self: &Xoroshiro128, init_s: u64) void {
        // Xoroshiro requires 128-bits of seed.
        var gen = SplitMix64.init(init_s);

        self.s[0] = gen.next();
        self.s[1] = gen.next();
    }

    fn fill(r: &Random, buf: []u8) void {
        const self = @fieldParentPtr(Xoroshiro128, "random", r);

        var i: usize = 0;
        const aligned_len = buf.len - (buf.len & 7);

        // Complete 8 byte segments.
        while (i < aligned_len) : (i += 8) {
            var n = self.next();
            comptime var j: usize = 0;
            inline while (j < 8) : (j += 1) {
                buf[i + j] = @truncate(u8, n);
                n >>= 8;
            }
        }

        // Remaining. (cuts the stream)
        if (i != buf.len) {
            var n = self.next();
            while (i < buf.len) : (i += 1) {
                buf[i] = @truncate(u8, n);
                n >>= 8;
            }
        }
    }
};

test "xoroshiro sequence" {
    var r = Xoroshiro128.init(0);
    r.s[0] = 0xaeecf86f7878dd75;
    r.s[1] = 0x01cd153642e72622;

    const seq1 = []const u64 {
        0xb0ba0da5bb600397,
        0x18a08afde614dccc,
        0xa2635b956a31b929,
        0xabe633c971efa045,
        0x9ac19f9706ca3cac,
        0xf62b426578c1e3fb,
    };

    for (seq1) |s| {
        std.debug.assert(s == r.next());
    }


    r.jump();

    const seq2 = []const u64 {
        0x95344a13556d3e22,
        0xb4fb32dafa4d00df,
        0xb2011d9ccdcfe2dd,
        0x05679a9b2119b908,
        0xa860a1da7c9cd8a0,
        0x658a96efe3f86550,
    };

    for (seq2) |s| {
        std.debug.assert(s == r.next());
    }
}

// ISAAC64 - http://www.burtleburtle.net/bob/rand/isaacafa.html
//
// CSPRNG
//
// Follows the general idea of the implementation from here with a few shortcuts.
// https://doc.rust-lang.org/rand/src/rand/prng/isaac64.rs.html
pub const Isaac64 = struct {
    random: Random,

    r: [256]u64,
    m: [256]u64,
    a: u64,
    b: u64,
    c: u64,
    i: usize,

    pub fn init(init_s: u64) Isaac64 {
        var isaac = Isaac64 {
            .random = Random { .fillFn = fill },
            .r = undefined,
            .m = undefined,
            .a = undefined,
            .b = undefined,
            .c = undefined,
            .i = undefined,
        };

        // seed == 0 => same result as the unseeded reference implementation
        isaac.seed(init_s, 1);
        return isaac;
    }

    fn step(self: &Isaac64, mix: u64, base: usize, comptime m1: usize, comptime m2: usize) void {
        const x = self.m[base + m1];
        self.a = mix +% self.m[base + m2];

        const y = self.a +% self.b +% self.m[(x >> 3) % self.m.len];
        self.m[base + m1] = y;

        self.b = x +% self.m[(y >> 11) % self.m.len];
        self.r[self.r.len - 1 - base - m1] = self.b;
    }

    fn refill(self: &Isaac64) void {
        const midpoint = self.r.len / 2;

        self.c +%= 1;
        self.b +%= self.c;

        {
            var i: usize = 0;
            while (i < midpoint) : (i += 4) {
                self.step( ~(self.a ^ (self.a << 21)), i + 0, 0, midpoint);
                self.step(   self.a ^ (self.a >>  5) , i + 1, 0, midpoint);
                self.step(   self.a ^ (self.a << 12) , i + 2, 0, midpoint);
                self.step(   self.a ^ (self.a >> 33) , i + 3, 0, midpoint);
            }
        }

        {
            var i: usize = 0;
            while (i < midpoint) : (i += 4) {
                self.step( ~(self.a ^ (self.a << 21)), i + 0, midpoint, 0);
                self.step(   self.a ^ (self.a >>  5) , i + 1, midpoint, 0);
                self.step(   self.a ^ (self.a << 12) , i + 2, midpoint, 0);
                self.step(   self.a ^ (self.a >> 33) , i + 3, midpoint, 0);
            }
        }

        self.i = 0;
    }

    fn next(self: &Isaac64) u64 {
        if (self.i >= self.r.len) {
            self.refill();
        }

        const value = self.r[self.i];
        self.i += 1;
        return value;
    }

    fn seed(self: &Isaac64, init_s: u64, comptime rounds: usize) void {
        // We ignore the multi-pass requirement since we don't currently expose full access to
        // seeding the self.m array completely.
        mem.set(u64, self.m[0..], 0);
        self.m[0] = init_s;

        // prescrambled golden ratio constants
        var a = []const u64 {
            0x647c4677a2884b7c,
            0xb9f8b322c73ac862,
            0x8c0ea5053d4712a0,
            0xb29b2e824a595524,
            0x82f053db8355e0ce,
            0x48fe4a0fa5a09315,
            0xae985bf2cbfc89ed,
            0x98f5704f6c44c0ab,
        };

        comptime var i: usize = 0;
        inline while (i < rounds) : (i += 1) {
            var j: usize = 0;
            while (j < self.m.len) : (j += 8) {
                comptime var x1: usize = 0;
                inline while (x1 < 8) : (x1 += 1) {
                    a[x1] +%= self.m[j + x1];
                }

                a[0] -%= a[4]; a[5] ^= a[7] >>  9; a[7] +%= a[0];
                a[1] -%= a[5]; a[6] ^= a[0] <<  9; a[0] +%= a[1];
                a[2] -%= a[6]; a[7] ^= a[1] >> 23; a[1] +%= a[2];
                a[3] -%= a[7]; a[0] ^= a[2] << 15; a[2] +%= a[3];
                a[4] -%= a[0]; a[1] ^= a[3] >> 14; a[3] +%= a[4];
                a[5] -%= a[1]; a[2] ^= a[4] << 20; a[4] +%= a[5];
                a[6] -%= a[2]; a[3] ^= a[5] >> 17; a[5] +%= a[6];
                a[7] -%= a[3]; a[4] ^= a[6] << 14; a[6] +%= a[7];

                comptime var x2: usize = 0;
                inline while (x2 < 8) : (x2 += 1) {
                    self.m[j + x2] = a[x2];
                }
            }
        }

        mem.set(u64, self.r[0..], 0);
        self.a = 0;
        self.b = 0;
        self.c = 0;
        self.i = self.r.len;    // trigger refill on first value
    }

    fn fill(r: &Random, buf: []u8) void {
        const self = @fieldParentPtr(Isaac64, "random", r);

        var i: usize = 0;
        const aligned_len = buf.len - (buf.len & 7);

        // Fill complete 64-byte segments
        while (i < aligned_len) : (i += 8) {
            var n = self.next();
            comptime var j: usize = 0;
            inline while (j < 8) : (j += 1) {
                buf[i + j] = @truncate(u8, n);
                n >>= 8;
            }
        }

        // Fill trailing, ignoring excess (cut the stream).
        if (i != buf.len) {
            var n = self.next();
            while (i < buf.len) : (i += 1) {
                buf[i] = @truncate(u8, n);
                n >>= 8;
            }
        }
    }
};

test "isaac64 sequence" {
    var r = Isaac64.init(0);

    // from reference implementation
    const seq = []const u64 {
        0xf67dfba498e4937c,
        0x84a5066a9204f380,
        0xfee34bd5f5514dbb,
        0x4d1664739b8f80d6,
        0x8607459ab52a14aa,
        0x0e78bc5a98529e49,
        0xfe5332822ad13777,
        0x556c27525e33d01a,
        0x08643ca615f3149f,
        0xd0771faf3cb04714,
        0x30e86f68a37b008d,
        0x3074ebc0488a3adf,
        0x270645ea7a2790bc,
        0x5601a0a8d3763c6a,
        0x2f83071f53f325dd,
        0xb9090f3d42d2d2ea,
    };

    for (seq) |s| {
        std.debug.assert(s == r.next());
    }
}

// Actual Random helper function tests, pcg engine is assumed correct.
test "Random float" {
    var prng = DefaultPrng.init(0);

    var i: usize = 0;
    while (i < 1000) : (i += 1) {
        const val1 = prng.random.float(f32);
        std.debug.assert(val1 >= 0.0);
        std.debug.assert(val1 < 1.0);

        const val2 = prng.random.float(f64);
        std.debug.assert(val2 >= 0.0);
        std.debug.assert(val2 < 1.0);
    }
}

test "Random scalar" {
    var prng = DefaultPrng.init(0);
    const s = prng .random.scalar(u64);
}

test "Random bytes" {
    var prng = DefaultPrng.init(0);
    var buf: [2048]u8 = undefined;
    prng.random.bytes(buf[0..]);
}

test "Random shuffle" {
    var prng = DefaultPrng.init(0);

    var seq = []const u8 { 0, 1, 2, 3, 4 };
    var seen = []bool {false} ** 5;

    var i: usize = 0;
    while (i < 1000) : (i += 1) {
        prng.random.shuffle(u8, seq[0..]);
        seen[seq[0]] = true;
        std.debug.assert(sumArray(seq[0..]) == 10);
    }

    // we should see every entry at the head at least once
    for (seen) |e| {
        std.debug.assert(e == true);
    }
}

fn sumArray(s: []const u8) u32 {
    var r: u32 = 0;
    for (s) |e| r += e;
    return r;
}

test "Random range" {
    var prng = DefaultPrng.init(0);
    testRange(&prng.random, -4, 3);
    testRange(&prng.random, -4, -1);
    testRange(&prng.random, 10, 14);
}

fn testRange(r: &Random, start: i32, end: i32) void {
    const count = usize(end - start);
    var values_buffer = []bool{false} ** 20;
    const values = values_buffer[0..count];
    var i: usize = 0;
    while (i < count) {
        const value = r.range(i32, start, end);
        const index = usize(value - start);
        if (!values[index]) {
            i += 1;
            values[index] = true;
        }
    }
}