1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
const std = @import("std.zig");
const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
const AtomicRmwOp = builtin.AtomicRmwOp;
const testing = std.testing;
const SpinLock = std.SpinLock;
const linux = std.os.linux;
const windows = std.os.windows;
/// Lock may be held only once. If the same thread
/// tries to acquire the same mutex twice, it deadlocks.
/// This type must be initialized at runtime, and then deinitialized when no
/// longer needed, to free resources.
/// If you need static initialization, use std.StaticallyInitializedMutex.
/// The Linux implementation is based on mutex3 from
/// https://www.akkadia.org/drepper/futex.pdf
/// When an application is built in single threaded release mode, all the functions are
/// no-ops. In single threaded debug mode, there is deadlock detection.
pub const Mutex = if (builtin.single_threaded)
struct {
lock: @typeOf(lock_init),
const lock_init = if (std.debug.runtime_safety) false else {};
pub const Held = struct {
mutex: *Mutex,
pub fn release(self: Held) void {
if (std.debug.runtime_safety) {
self.mutex.lock = false;
}
}
};
pub fn init() Mutex {
return Mutex{ .lock = lock_init };
}
pub fn deinit(self: *Mutex) void {}
pub fn acquire(self: *Mutex) Held {
if (std.debug.runtime_safety and self.lock) {
@panic("deadlock detected");
}
return Held{ .mutex = self };
}
}
else switch (builtin.os) {
builtin.Os.linux => struct {
/// 0: unlocked
/// 1: locked, no waiters
/// 2: locked, one or more waiters
lock: i32,
pub const Held = struct {
mutex: *Mutex,
pub fn release(self: Held) void {
const c = @atomicRmw(i32, &self.mutex.lock, AtomicRmwOp.Sub, 1, AtomicOrder.Release);
if (c != 1) {
_ = @atomicRmw(i32, &self.mutex.lock, AtomicRmwOp.Xchg, 0, AtomicOrder.Release);
const rc = linux.futex_wake(&self.mutex.lock, linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG, 1);
switch (linux.getErrno(rc)) {
0 => {},
linux.EINVAL => unreachable,
else => unreachable,
}
}
}
};
pub fn init() Mutex {
return Mutex{ .lock = 0 };
}
pub fn deinit(self: *Mutex) void {}
pub fn acquire(self: *Mutex) Held {
var c = @cmpxchgWeak(i32, &self.lock, 0, 1, AtomicOrder.Acquire, AtomicOrder.Monotonic) orelse
return Held{ .mutex = self };
if (c != 2)
c = @atomicRmw(i32, &self.lock, AtomicRmwOp.Xchg, 2, AtomicOrder.Acquire);
while (c != 0) {
const rc = linux.futex_wait(&self.lock, linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG, 2, null);
switch (linux.getErrno(rc)) {
0, linux.EINTR, linux.EAGAIN => {},
linux.EINVAL => unreachable,
else => unreachable,
}
c = @atomicRmw(i32, &self.lock, AtomicRmwOp.Xchg, 2, AtomicOrder.Acquire);
}
return Held{ .mutex = self };
}
},
// TODO once https://github.com/ziglang/zig/issues/287 (copy elision) is solved, we can make a
// better implementation of this. The problem is we need the init() function to have access to
// the address of the CRITICAL_SECTION, and then have it not move.
builtin.Os.windows => std.StaticallyInitializedMutex,
else => struct {
/// TODO better implementation than spin lock.
/// When changing this, one must also change the corresponding
/// std.StaticallyInitializedMutex code, since it aliases this type,
/// under the assumption that it works both statically and at runtime.
lock: SpinLock,
pub const Held = struct {
mutex: *Mutex,
pub fn release(self: Held) void {
SpinLock.Held.release(SpinLock.Held{ .spinlock = &self.mutex.lock });
}
};
pub fn init() Mutex {
return Mutex{ .lock = SpinLock.init() };
}
pub fn deinit(self: *Mutex) void {}
pub fn acquire(self: *Mutex) Held {
_ = self.lock.acquire();
return Held{ .mutex = self };
}
},
};
const TestContext = struct {
mutex: *Mutex,
data: i128,
const incr_count = 10000;
};
test "std.Mutex" {
var direct_allocator = std.heap.DirectAllocator.init();
defer direct_allocator.deinit();
var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024);
defer direct_allocator.allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var mutex = Mutex.init();
defer mutex.deinit();
var context = TestContext{
.mutex = &mutex,
.data = 0,
};
if (builtin.single_threaded) {
worker(&context);
testing.expect(context.data == TestContext.incr_count);
} else {
const thread_count = 10;
var threads: [thread_count]*std.os.Thread = undefined;
for (threads) |*t| {
t.* = try std.os.spawnThread(&context, worker);
}
for (threads) |t|
t.wait();
testing.expect(context.data == thread_count * TestContext.incr_count);
}
}
fn worker(ctx: *TestContext) void {
var i: usize = 0;
while (i != TestContext.incr_count) : (i += 1) {
const held = ctx.mutex.acquire();
defer held.release();
ctx.data += 1;
}
}
|