aboutsummaryrefslogtreecommitdiff
path: root/std/mem.zig
blob: b82ae8b08d9658fc6f5fbf89d96c2fb77209a294 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
const assert = @import("debug.zig").assert;
const math = @import("math.zig");
const os = @import("os/index.zig");
const io = @import("io.zig");

pub const Cmp = math.Cmp;

error NoMem;

pub const Allocator = struct {
    allocFn: fn (self: &Allocator, n: usize) -> %[]u8,
    /// Note that old_mem may be a slice of length 0, in which case reallocFn
    /// should simply call allocFn.
    reallocFn: fn (self: &Allocator, old_mem: []u8, new_size: usize) -> %[]u8,
    /// Note that mem may be a slice of length 0, in which case freeFn
    /// should do nothing.
    freeFn: fn (self: &Allocator, mem: []u8),

    /// Aborts the program if an allocation fails.
    fn checkedAlloc(self: &Allocator, comptime T: type, n: usize) -> []T {
        alloc(self, T, n) %% |err| {
            %%io.stderr.printf("allocation failure: {}\n", @errorName(err));
            os.abort()
        }
    }

    fn create(self: &Allocator, comptime T: type) -> %&T {
        &(%return self.alloc(T, 1))[0]
    }

    fn destroy(self: &Allocator, ptr: var) {
        self.free(ptr[0...1]);
    }

    fn alloc(self: &Allocator, comptime T: type, n: usize) -> %[]T {
        const byte_count = %return math.mulOverflow(usize, @sizeOf(T), n);
        ([]T)(%return self.allocFn(self, byte_count))
    }

    fn realloc(self: &Allocator, comptime T: type, old_mem: []T, n: usize) -> %[]T {
        const byte_count = %return math.mulOverflow(usize, @sizeOf(T), n);
        ([]T)(%return self.reallocFn(self, ([]u8)(old_mem), byte_count))
    }

    fn free(self: &Allocator, mem: var) {
        self.freeFn(self, ([]u8)(mem));
    }
};

pub const IncrementingAllocator = struct {
    allocator: Allocator,
    bytes: []u8,
    end_index: usize,

    fn init(capacity: usize) -> %IncrementingAllocator {
        switch (@compileVar("os")) {
            Os.linux, Os.darwin, Os.macosx, Os.ios => {
                const p = os.posix;
                const addr = p.mmap(null, capacity, p.PROT_READ|p.PROT_WRITE,
                    p.MAP_PRIVATE|p.MAP_ANONYMOUS|p.MAP_NORESERVE, -1, 0);
                if (addr == p.MAP_FAILED) {
                    return error.NoMem;
                }
                return IncrementingAllocator {
                    .allocator = Allocator {
                        .allocFn = alloc,
                        .reallocFn = realloc,
                        .freeFn = free,
                    },
                    .bytes = @intToPtr(&u8, addr)[0...capacity],
                    .end_index = 0,
                };
            },
            else => @compileError("Unsupported OS"),
        }
    }

    fn deinit(self: &IncrementingAllocator) {
        _ = os.posix.munmap(self.bytes.ptr, self.bytes.len);
    }

    fn alloc(allocator: &Allocator, n: usize) -> %[]u8 {
        const self = @fieldParentPtr(IncrementingAllocator, "allocator", allocator);
        const new_end_index = self.end_index + n;
        if (new_end_index > self.bytes.len) {
            return error.NoMem;
        }
        const result = self.bytes[self.end_index...new_end_index];
        self.end_index = new_end_index;
        return result;
    }

    fn realloc(allocator: &Allocator, old_mem: []u8, new_size: usize) -> %[]u8 {
        const result = %return alloc(allocator, new_size);
        copy(u8, result, old_mem);
        return result;
    }

    fn free(allocator: &Allocator, bytes: []u8) {
        // Do nothing. That's the point of an incrementing allocator.
    }
};

/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
pub fn copy(comptime T: type, dest: []T, source: []const T) {
    // TODO instead of manually doing this check for the whole array
    // and turning off debug safety, the compiler should detect loops like
    // this and automatically omit safety checks for loops
    @setDebugSafety(this, false);
    assert(dest.len >= source.len);
    for (source) |s, i| dest[i] = s;
}

pub fn set(comptime T: type, dest: []T, value: T) {
    for (dest) |*d| *d = value;
}

/// Return < 0, == 0, or > 0 if memory a is less than, equal to, or greater than,
/// memory b, respectively.
pub fn cmp(comptime T: type, a: []const T, b: []const T) -> Cmp {
    const n = math.min(a.len, b.len);
    var i: usize = 0;
    while (i < n; i += 1) {
        if (a[i] == b[i]) continue;
        return if (a[i] > b[i]) Cmp.Greater else if (a[i] < b[i]) Cmp.Less else Cmp.Equal;
    }

    return if (a.len > b.len) Cmp.Greater else if (a.len < b.len) Cmp.Less else Cmp.Equal;
}

/// Compares two slices and returns whether they are equal.
pub fn eql(comptime T: type, a: []const T, b: []const T) -> bool {
    if (a.len != b.len) return false;
    for (a) |item, index| {
        if (b[index] != item) return false;
    }
    return true;
}

/// Copies ::m to newly allocated memory. Caller is responsible to free it.
pub fn dupe(allocator: &Allocator, comptime T: type, m: []const T) -> %[]T {
    const new_buf = %return allocator.alloc(T, m.len);
    copy(T, new_buf, m);
    return new_buf;
}

/// Linear search for the index of a scalar value inside a slice.
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) -> ?usize {
    for (slice) |item, i| {
        if (item == value) {
            return i;
        }
    }
    return null;
}

// TODO boyer-moore algorithm
pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) -> ?usize {
    if (needle.len > haystack.len)
        return null;

    var i: usize = 0;
    const end = haystack.len - needle.len;
    while (i <= end; i += 1) {
        if (eql(T, haystack[i...i + needle.len], needle))
            return i;
    }
    return null;
}

test "mem.indexOf" {
    assert(??indexOf(u8, "one two three four", "four") == 14);
    assert(indexOf(u8, "one two three four", "gour") == null);
    assert(??indexOf(u8, "foo", "foo") == 0);
    assert(indexOf(u8, "foo", "fool") == null);
}

/// Reads an integer from memory with size equal to bytes.len.
/// T specifies the return type, which must be large enough to store
/// the result.
pub fn readInt(bytes: []const u8, comptime T: type, big_endian: bool) -> T {
    var result: T = 0;
    if (big_endian) {
        for (bytes) |b| {
            result = (result << 8) | b;
        }
    } else {
        for (bytes) |b, index| {
            result = result | (T(b) << T(index * 8));
        }
    }
    return result;
}

/// Writes an integer to memory with size equal to bytes.len. Pads with zeroes
/// to fill the entire buffer provided.
/// value must be an integer.
pub fn writeInt(buf: []u8, value: var, big_endian: bool) {
    const uint = @IntType(false, @typeOf(value).bit_count);
    var bits = @truncate(uint, value);
    if (big_endian) {
        var index: usize = buf.len;
        while (index != 0) {
            index -= 1;

            buf[index] = @truncate(u8, bits);
            bits >>= 8;
        }
    } else {
        for (buf) |*b| {
            *b = @truncate(u8, bits);
            bits >>= 8;
        }
    }
    assert(bits == 0);
}


pub fn hash_slice_u8(k: []const u8) -> u32 {
    // FNV 32-bit hash
    var h: u32 = 2166136261;
    for (k) |b| {
        h = (h ^ b) *% 16777619;
    }
    return h;
}

pub fn eql_slice_u8(a: []const u8, b: []const u8) -> bool {
    return eql(u8, a, b);
}

/// Returns an iterator that iterates over the slices of ::s that are not
/// the byte ::c.
/// split("   abc def    ghi  ")
/// Will return slices for "abc", "def", "ghi", null, in that order.
pub fn split(s: []const u8, c: u8) -> SplitIterator {
    SplitIterator {
        .index = 0,
        .s = s,
        .c = c,
    }
}

test "mem.split" {
    var it = split("   abc def   ghi  ", ' ');
    assert(eql(u8, ??it.next(), "abc"));
    assert(eql(u8, ??it.next(), "def"));
    assert(eql(u8, ??it.next(), "ghi"));
    assert(it.next() == null);
}

pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) -> bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[0...needle.len], needle);
}

const SplitIterator = struct {
    s: []const u8,
    c: u8,
    index: usize,

    pub fn next(self: &SplitIterator) -> ?[]const u8 {
        // move to beginning of token
        while (self.index < self.s.len and self.s[self.index] == self.c; self.index += 1) {}
        const start = self.index;
        if (start == self.s.len) {
            return null;
        }

        // move to end of token
        while (self.index < self.s.len and self.s[self.index] != self.c; self.index += 1) {}
        const end = self.index;

        return self.s[start...end];
    }

    /// Returns a slice of the remaining bytes. Does not affect iterator state.
    pub fn rest(self: &const SplitIterator) -> []const u8 {
        // move to beginning of token
        var index: usize = self.index;
        while (index < self.s.len and self.s[index] == self.c; index += 1) {}
        return self.s[index...];
    }
};

test "testStringEquality" {
    assert(eql(u8, "abcd", "abcd"));
    assert(!eql(u8, "abcdef", "abZdef"));
    assert(!eql(u8, "abcdefg", "abcdef"));
}

test "testReadInt" {
    testReadIntImpl();
    comptime testReadIntImpl();
}
fn testReadIntImpl() {
    {
        const bytes = []u8{ 0x12, 0x34, 0x56, 0x78 };
        assert(readInt(bytes, u32, true) == 0x12345678);
        assert(readInt(bytes, u32, false) == 0x78563412);
    }
    {
        const buf = []u8{0x00, 0x00, 0x12, 0x34};
        const answer = readInt(buf, u64, true);
        assert(answer == 0x00001234);
    }
    {
        const buf = []u8{0x12, 0x34, 0x00, 0x00};
        const answer = readInt(buf, u64, false);
        assert(answer == 0x00003412);
    }
}

test "testWriteInt" {
    testWriteIntImpl();
    comptime testWriteIntImpl();
}
fn testWriteIntImpl() {
    var bytes: [4]u8 = undefined;

    writeInt(bytes[0...], u32(0x12345678), true);
    assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 }));

    writeInt(bytes[0...], u32(0x78563412), false);
    assert(eql(u8, bytes, []u8{ 0x12, 0x34, 0x56, 0x78 }));

    writeInt(bytes[0...], u16(0x1234), true);
    assert(eql(u8, bytes, []u8{ 0x00, 0x00, 0x12, 0x34 }));

    writeInt(bytes[0...], u16(0x1234), false);
    assert(eql(u8, bytes, []u8{ 0x34, 0x12, 0x00, 0x00 }));
}