1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
// Special Cases:
//
// - sqrt(+inf) = +inf
// - sqrt(+-0) = +-0
// - sqrt(x) = nan if x < 0
// - sqrt(nan) = nan
const std = @import("../index.zig");
const math = std.math;
const assert = std.debug.assert;
const builtin = @import("builtin");
const TypeId = builtin.TypeId;
pub fn sqrt(x: var) -> (if (@typeId(@typeOf(x)) == TypeId.Int) @IntType(false, @typeOf(x).bit_count / 2) else @typeOf(x)) {
const T = @typeOf(x);
switch (@typeId(T)) {
TypeId.FloatLiteral => {
return T(sqrt64(x));
},
TypeId.Float => {
return switch (T) {
f32 => sqrt32(x),
f64 => sqrt64(x),
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
};
},
TypeId.IntLiteral => comptime {
if (x > @maxValue(u128)) {
@compileError("sqrt not implemented for comptime_int greater than 128 bits");
}
if (x < 0) {
@compileError("sqrt on negative number");
}
return T(sqrt_int(u128, x));
},
TypeId.Int => {
return sqrt_int(T, x);
},
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
}
}
fn sqrt32(x: f32) -> f32 {
const tiny: f32 = 1.0e-30;
const sign: i32 = @bitCast(i32, u32(0x80000000));
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
return x; // sqrt (+-0) = +-0
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
m -= 127; // unbias exponent
ix = (ix & 0x007FFFFF) | 0x00800000;
if (m & 1 != 0) { // odd m, double x to even
ix += ix;
}
m >>= 1; // m = [m / 2]
// sqrt(x) bit by bit
ix += ix;
var q: i32 = 0; // q = sqrt(x)
var s: i32 = 0;
var r: i32 = 0x01000000; // r = moving bit right -> left
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
var z = 1.0 - tiny; // inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
// potentially some edge cases remaining that are not handled in the same way.
fn sqrt64(x: f64) -> f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = u32(u >> 32);
var ix1 = u32(u & 0xFFFFFFFF);
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = i32(ix0 >> 20);
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= i32(i) - 1;
ix0 |= ix1 >> u5(32 - i);
ix1 <<= u5(i);
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t = s1 +% r;
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
var z = 1.0 - tiny; // raise inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = i32(ix0);
iix0 = iix0 +% (m << 20);
const uz = (u64(iix0) << 32) | ix1;
return @bitCast(f64, uz);
}
test "math.sqrt" {
assert(sqrt(f32(0.0)) == sqrt32(0.0));
assert(sqrt(f64(0.0)) == sqrt64(0.0));
}
test "math.sqrt32" {
const epsilon = 0.000001;
assert(sqrt32(0.0) == 0.0);
assert(math.approxEq(f32, sqrt32(2.0), 1.414214, epsilon));
assert(math.approxEq(f32, sqrt32(3.6), 1.897367, epsilon));
assert(sqrt32(4.0) == 2.0);
assert(math.approxEq(f32, sqrt32(7.539840), 2.745877, epsilon));
assert(math.approxEq(f32, sqrt32(19.230934), 4.385309, epsilon));
assert(sqrt32(64.0) == 8.0);
assert(math.approxEq(f32, sqrt32(64.1), 8.006248, epsilon));
assert(math.approxEq(f32, sqrt32(8942.230469), 94.563370, epsilon));
}
test "math.sqrt64" {
const epsilon = 0.000001;
assert(sqrt64(0.0) == 0.0);
assert(math.approxEq(f64, sqrt64(2.0), 1.414214, epsilon));
assert(math.approxEq(f64, sqrt64(3.6), 1.897367, epsilon));
assert(sqrt64(4.0) == 2.0);
assert(math.approxEq(f64, sqrt64(7.539840), 2.745877, epsilon));
assert(math.approxEq(f64, sqrt64(19.230934), 4.385309, epsilon));
assert(sqrt64(64.0) == 8.0);
assert(math.approxEq(f64, sqrt64(64.1), 8.006248, epsilon));
assert(math.approxEq(f64, sqrt64(8942.230469), 94.563367, epsilon));
}
test "math.sqrt32.special" {
assert(math.isPositiveInf(sqrt32(math.inf(f32))));
assert(sqrt32(0.0) == 0.0);
assert(sqrt32(-0.0) == -0.0);
assert(math.isNan(sqrt32(-1.0)));
assert(math.isNan(sqrt32(math.nan(f32))));
}
test "math.sqrt64.special" {
assert(math.isPositiveInf(sqrt64(math.inf(f64))));
assert(sqrt64(0.0) == 0.0);
assert(sqrt64(-0.0) == -0.0);
assert(math.isNan(sqrt64(-1.0)));
assert(math.isNan(sqrt64(math.nan(f64))));
}
fn sqrt_int(comptime T: type, value: T) -> @IntType(false, T.bit_count / 2) {
var op = value;
var res: T = 0;
var one: T = 1 << (T.bit_count - 2);
// "one" starts at the highest power of four <= than the argument.
while (one > op) {
one >>= 2;
}
while (one != 0) {
if (op >= res + one) {
op -= res + one;
res += 2 * one;
}
res >>= 1;
one >>= 2;
}
const ResultType = @IntType(false, T.bit_count / 2);
return ResultType(res);
}
test "math.sqrt_int" {
assert(sqrt_int(u32, 3) == 1);
assert(sqrt_int(u32, 4) == 2);
assert(sqrt_int(u32, 5) == 2);
assert(sqrt_int(u32, 8) == 2);
assert(sqrt_int(u32, 9) == 3);
assert(sqrt_int(u32, 10) == 3);
}
|