1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
const std = @import("../../index.zig");
const debug = std.debug;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
pub fn tanh(z: var) @typeOf(z) {
const T = @typeOf(z.re);
return switch (T) {
f32 => tanh32(z),
f64 => tanh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn tanh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @bitCast(u32, x);
const ix = hx & 0x7fffffff;
if (ix >= 0x7f800000) {
if (ix & 0x7fffff != 0) {
const r = if (y == 0) y else x * y;
return Complex(f32).new(x, r);
}
const xx = @bitCast(f32, hx - 0x40000000);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f32).new(xx, math.copysign(f32, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f32).new(r, y - y);
}
// x >= 11
if (ix >= 0x41300000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f32).new((beta * rho * s) / den, t / den);
}
fn tanh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx = @bitCast(u64, x);
// TODO: zig should allow this conversion implicitly because it can notice that the value necessarily
// fits in range.
const hx = @intCast(u32, fx >> 32);
const lx = @truncate(u32, fx);
const ix = hx & 0x7fffffff;
if (ix >= 0x7ff00000) {
if ((ix & 0x7fffff) | lx != 0) {
const r = if (y == 0) y else x * y;
return Complex(f64).new(x, r);
}
const xx = @bitCast(f64, (u64(hx - 0x40000000) << 32) | lx);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f64).new(xx, math.copysign(f64, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f64).new(r, y - y);
}
// x >= 22
if (ix >= 0x40360000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f64).new((beta * rho * s) / den, t / den);
}
const epsilon = 0.0001;
test "complex.ctanh32" {
const a = Complex(f32).new(5, 3);
const c = tanh(a);
debug.assert(math.approxEq(f32, c.re, 0.999913, epsilon));
debug.assert(math.approxEq(f32, c.im, -0.000025, epsilon));
}
test "complex.ctanh64" {
const a = Complex(f64).new(5, 3);
const c = tanh(a);
debug.assert(math.approxEq(f64, c.re, 0.999913, epsilon));
debug.assert(math.approxEq(f64, c.im, -0.000025, epsilon));
}
|