1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
const builtin = @import("builtin");
const Os = builtin.Os;
const system = switch(builtin.os) {
Os.linux => @import("os/linux.zig"),
Os.darwin => @import("os/darwin.zig"),
else => @compileError("Unsupported OS"),
};
const errno = @import("os/errno.zig");
const math = @import("math.zig");
const debug = @import("debug.zig");
const assert = debug.assert;
const os = @import("os/index.zig");
const mem = @import("mem.zig");
const Buffer = @import("buffer.zig").Buffer;
const fmt = @import("fmt.zig");
pub var stdin = InStream {
.fd = system.STDIN_FILENO,
};
pub var stdout = OutStream {
.fd = system.STDOUT_FILENO,
.buffer = undefined,
.index = 0,
};
pub var stderr = OutStream {
.fd = system.STDERR_FILENO,
.buffer = undefined,
.index = 0,
};
/// The function received invalid input at runtime. An Invalid error means a
/// bug in the program that called the function.
error Invalid;
/// When an Unexpected error occurs, code that emitted the error likely needs
/// a patch to recognize the unexpected case so that it can handle it and emit
/// a more specific error.
error Unexpected;
error DiskQuota;
error FileTooBig;
error Io;
error NoSpaceLeft;
error BadPerm;
error PipeFail;
error BadFd;
error IsDir;
error NotDir;
error SymLinkLoop;
error ProcessFdQuotaExceeded;
error SystemFdQuotaExceeded;
error NameTooLong;
error NoDevice;
error PathNotFound;
error NoMem;
error Unseekable;
error EndOfFile;
pub const OpenRead = 0b0001;
pub const OpenWrite = 0b0010;
pub const OpenCreate = 0b0100;
pub const OpenTruncate = 0b1000;
pub const OutStream = struct {
fd: i32,
buffer: [os.page_size]u8,
index: usize,
/// Calls ::openMode with 0o666 for the mode.
pub fn open(path: []const u8, allocator: ?&mem.Allocator) -> %OutStream {
return openMode(path, 0o666, allocator);
}
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
/// Call close to clean up.
pub fn openMode(path: []const u8, mode: usize, allocator: ?&mem.Allocator) -> %OutStream {
switch (builtin.os) {
Os.linux, Os.darwin, Os.macosx, Os.ios => {
const flags = system.O_LARGEFILE|system.O_WRONLY|system.O_CREAT|system.O_CLOEXEC|system.O_TRUNC;
const fd = %return os.posixOpen(path, flags, mode, allocator);
return OutStream {
.fd = fd,
.index = 0,
.buffer = undefined,
};
},
else => @compileError("Unsupported OS"),
}
}
pub fn writeByte(self: &OutStream, b: u8) -> %void {
if (self.buffer.len == self.index) %return self.flush();
self.buffer[self.index] = b;
self.index += 1;
}
pub fn write(self: &OutStream, bytes: []const u8) -> %void {
if (bytes.len >= self.buffer.len) {
%return self.flush();
return os.posixWrite(self.fd, bytes);
}
var src_index: usize = 0;
while (src_index < bytes.len) {
const dest_space_left = self.buffer.len - self.index;
const copy_amt = math.min(dest_space_left, bytes.len - src_index);
mem.copy(u8, self.buffer[self.index..], bytes[src_index..src_index + copy_amt]);
self.index += copy_amt;
assert(self.index <= self.buffer.len);
if (self.index == self.buffer.len) {
%return self.flush();
}
src_index += copy_amt;
}
}
/// Calls print and then flushes the buffer.
pub fn printf(self: &OutStream, comptime format: []const u8, args: ...) -> %void {
%return self.print(format, args);
%return self.flush();
}
/// Does not flush the buffer.
pub fn print(self: &OutStream, comptime format: []const u8, args: ...) -> %void {
var context = PrintContext {
.self = self,
.result = {},
};
_ = fmt.format(&context, printOutput, format, args);
return context.result;
}
const PrintContext = struct {
self: &OutStream,
result: %void,
};
fn printOutput(context: &PrintContext, bytes: []const u8) -> bool {
context.self.write(bytes) %% |err| {
context.result = err;
return false;
};
return true;
}
pub fn flush(self: &OutStream) -> %void {
if (self.index != 0) {
%return os.posixWrite(self.fd, self.buffer[0..self.index]);
self.index = 0;
}
}
pub fn close(self: &OutStream) {
assert(self.index == 0);
os.posixClose(self.fd);
}
pub fn isTty(self: &const OutStream) -> bool {
return os.posix.isatty(self.fd);
}
};
// TODO created a BufferedInStream struct and move some of this code there
// BufferedInStream API goes on top of minimal InStream API.
pub const InStream = struct {
fd: i32,
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
/// Call close to clean up.
pub fn open(path: []const u8, allocator: ?&mem.Allocator) -> %InStream {
switch (builtin.os) {
Os.linux, Os.darwin, Os.macosx, Os.ios => {
const flags = system.O_LARGEFILE|system.O_RDONLY;
const fd = %return os.posixOpen(path, flags, 0, allocator);
return InStream {
.fd = fd,
};
},
else => @compileError("Unsupported OS"),
}
}
/// Upon success, the stream is in an uninitialized state. To continue using it,
/// you must use the open() function.
pub fn close(self: &InStream) {
switch (builtin.os) {
Os.linux, Os.darwin, Os.macosx, Os.ios => {
os.posixClose(self.fd);
},
else => @compileError("Unsupported OS"),
}
}
/// Returns the number of bytes read. If the number read is smaller than buf.len, then
/// the stream reached End Of File.
pub fn read(is: &InStream, buf: []u8) -> %usize {
switch (builtin.os) {
Os.linux, Os.darwin => {
var index: usize = 0;
while (index < buf.len) {
const amt_read = system.read(is.fd, &buf[index], buf.len - index);
const read_err = system.getErrno(amt_read);
if (read_err > 0) {
switch (read_err) {
errno.EINTR => continue,
errno.EINVAL => unreachable,
errno.EFAULT => unreachable,
errno.EBADF => return error.BadFd,
errno.EIO => return error.Io,
else => return error.Unexpected,
}
}
if (amt_read == 0) return index;
index += amt_read;
}
return index;
},
else => @compileError("Unsupported OS"),
}
}
pub fn readNoEof(is: &InStream, buf: []u8) -> %void {
const amt_read = %return is.read(buf);
if (amt_read < buf.len) return error.EndOfFile;
}
pub fn readByte(is: &InStream) -> %u8 {
var result: [1]u8 = undefined;
%return is.readNoEof(result[0..]);
return result[0];
}
pub fn readByteSigned(is: &InStream) -> %i8 {
var result: [1]i8 = undefined;
%return is.readNoEof(([]u8)(result[0..]));
return result[0];
}
pub fn readIntLe(is: &InStream, comptime T: type) -> %T {
is.readInt(false, T)
}
pub fn readIntBe(is: &InStream, comptime T: type) -> %T {
is.readInt(true, T)
}
pub fn readInt(is: &InStream, is_be: bool, comptime T: type) -> %T {
var bytes: [@sizeOf(T)]u8 = undefined;
%return is.readNoEof(bytes[0..]);
return mem.readInt(bytes, T, is_be);
}
pub fn readVarInt(is: &InStream, is_be: bool, comptime T: type, size: usize) -> %T {
assert(size <= @sizeOf(T));
assert(size <= 8);
var input_buf: [8]u8 = undefined;
const input_slice = input_buf[0..size];
%return is.readNoEof(input_slice);
return mem.readInt(input_slice, T, is_be);
}
pub fn seekForward(is: &InStream, amount: usize) -> %void {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, amount, system.SEEK_CUR);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
},
else => @compileError("unsupported OS"),
}
}
pub fn seekTo(is: &InStream, pos: usize) -> %void {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, pos, system.SEEK_SET);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
},
else => @compileError("unsupported OS"),
}
}
pub fn getPos(is: &InStream) -> %usize {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, 0, system.SEEK_CUR);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
return result;
},
else => @compileError("unsupported OS"),
}
}
pub fn getEndPos(is: &InStream) -> %usize {
var stat: system.stat = undefined;
const err = system.getErrno(system.fstat(is.fd, &stat));
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.ENOMEM => error.NoMem,
else => error.Unexpected,
}
}
return usize(stat.size);
}
pub fn readAll(is: &InStream, buf: &Buffer) -> %void {
%return buf.resize(os.page_size);
var actual_buf_len: usize = 0;
while (true) {
const dest_slice = buf.toSlice()[actual_buf_len..];
const bytes_read = %return is.read(dest_slice);
actual_buf_len += bytes_read;
if (bytes_read != dest_slice.len) {
return buf.resize(actual_buf_len);
}
%return buf.resize(actual_buf_len + os.page_size);
}
}
pub fn isTty(self: &const InStream) -> bool {
return os.posix.isatty(self.fd);
}
};
pub fn openSelfExe() -> %InStream {
switch (builtin.os) {
Os.linux => {
return InStream.open("/proc/self/exe", null);
},
Os.darwin => {
debug.panic("TODO: openSelfExe on Darwin");
},
else => @compileError("Unsupported OS"),
}
}
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
pub fn writeFile(path: []const u8, data: []const u8, allocator: ?&mem.Allocator) -> %void {
// TODO have an unbuffered File abstraction and use that here.
// Then a buffered out stream abstraction can go on top of that for
// use cases like stdout and stderr.
var out_stream = %return OutStream.open(path, allocator);
defer out_stream.close();
%return out_stream.write(data);
%return out_stream.flush();
}
|