aboutsummaryrefslogtreecommitdiff
path: root/std/hash_map.zig
blob: 14289542208d31226eb0849f47aa79783d07097d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
const debug = @import("debug.zig");
const assert = debug.assert;
const math = @import("math.zig");
const mem = @import("mem.zig");
const Allocator = mem.Allocator;

const want_modification_safety = !@compileVar("is_release");
const debug_u32 = if (want_modification_safety) u32 else void;

pub fn HashMap(inline K: type, inline V: type, inline hash: fn(key: K)->u32,
    inline eql: fn(a: K, b: K)->bool) -> type
{
    SmallHashMap(K, V, hash, eql, @sizeOf(usize))
}

pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b: K)->bool, static_size: usize) {
    entries: []Entry,
    size: usize,
    max_distance_from_start_index: usize,
    allocator: &Allocator,
    // if the hash map is small enough, we use linear search through these
    // entries instead of allocating memory
    prealloc_entries: [static_size]Entry,
    // this is used to detect bugs where a hashtable is edited while an iterator is running.
    modification_count: debug_u32,

    const Self = this;

    pub struct Entry {
        used: bool,
        distance_from_start_index: usize,
        key: K,
        value: V,
    }

    pub struct Iterator {
        hm: &Self,
        // how many items have we returned
        count: usize,
        // iterator through the entry array
        index: usize,
        // used to detect concurrent modification
        initial_modification_count: debug_u32,

        pub fn next(it: &Iterator) -> ?&Entry {
            if (want_modification_safety) {
                assert(it.initial_modification_count == it.hm.modification_count); // concurrent modification
            }
            if (it.count >= it.hm.size) return null;
            while (it.index < it.hm.entries.len; it.index += 1) {
                const entry = &it.hm.entries[it.index];
                if (entry.used) {
                    it.index += 1;
                    it.count += 1;
                    return entry;
                }
            }
            @unreachable() // no next item
        }
    }
    
    pub fn init(hm: &Self, allocator: &Allocator) {
        hm.entries = hm.prealloc_entries[0...];
        hm.allocator = allocator;
        hm.size = 0;
        hm.max_distance_from_start_index = 0;
        hm.prealloc_entries = zeroes; // sets used to false for all entries
        hm.modification_count = zeroes;
    }

    pub fn deinit(hm: &Self) {
        if (hm.entries.ptr != &hm.prealloc_entries[0]) {
            hm.allocator.free(Entry, hm.entries);
        }
    }

    pub fn clear(hm: &Self) {
        for (hm.entries) |*entry| {
            entry.used = false;
        }
        hm.size = 0;
        hm.max_distance_from_start_index = 0;
        hm.incrementModificationCount();
    }

    pub fn put(hm: &Self, key: K, value: V) -> %void {
        hm.incrementModificationCount();

        const resize = if (hm.entries.ptr == &hm.prealloc_entries[0]) {
            // preallocated entries table is full
            hm.size == hm.entries.len
        } else {
            // if we get too full (60%), double the capacity
            hm.size * 5 >= hm.entries.len * 3
        };
        if (resize) {
            const old_entries = hm.entries;
            %return hm.initCapacity(hm.entries.len * 2);
            // dump all of the old elements into the new table
            for (old_entries) |*old_entry| {
                if (old_entry.used) {
                    hm.internalPut(old_entry.key, old_entry.value);
                }
            }
            if (old_entries.ptr != &hm.prealloc_entries[0]) {
                hm.allocator.free(Entry, old_entries);
            }
        }

        hm.internalPut(key, value);
    }

    pub fn get(hm: &Self, key: K) -> ?&Entry {
        return hm.internalGet(key);
    }

    pub fn remove(hm: &Self, key: K) {
        hm.incrementModificationCount();
        const start_index = hm.keyToIndex(key);
        {var roll_over: usize = 0; while (roll_over <= hm.max_distance_from_start_index; roll_over += 1) {
            const index = (start_index + roll_over) % hm.entries.len;
            var entry = &hm.entries[index];

            assert(entry.used); // key not found

            if (!eql(entry.key, key)) continue;

            while (roll_over < hm.entries.len; roll_over += 1) {
                const next_index = (start_index + roll_over + 1) % hm.entries.len;
                const next_entry = &hm.entries[next_index];
                if (!next_entry.used || next_entry.distance_from_start_index == 0) {
                    entry.used = false;
                    hm.size -= 1;
                    return;
                }
                *entry = *next_entry;
                entry.distance_from_start_index -= 1;
                entry = next_entry;
            }
            @unreachable() // shifting everything in the table
        }}
        @unreachable() // key not found
    }

    pub fn entryIterator(hm: &Self) -> Iterator {
        return Iterator {
            .hm = hm,
            .count = 0,
            .index = 0,
            .initial_modification_count = hm.modification_count,
        };
    }

    fn initCapacity(hm: &Self, capacity: usize) -> %void {
        hm.entries = %return hm.allocator.alloc(Entry, capacity);
        hm.size = 0;
        hm.max_distance_from_start_index = 0;
        for (hm.entries) |*entry| {
            entry.used = false;
        }
    }

    fn incrementModificationCount(hm: &Self) {
        if (want_modification_safety) {
            hm.modification_count +%= 1;
        }
    }

    fn internalPut(hm: &Self, orig_key: K, orig_value: V) {
        var key = orig_key;
        var value = orig_value;
        const start_index = hm.keyToIndex(key);
        var roll_over: usize = 0;
        var distance_from_start_index: usize = 0;
        while (roll_over < hm.entries.len; {roll_over += 1; distance_from_start_index += 1}) {
            const index = (start_index + roll_over) % hm.entries.len;
            const entry = &hm.entries[index];

            if (entry.used && !eql(entry.key, key)) {
                if (entry.distance_from_start_index < distance_from_start_index) {
                    // robin hood to the rescue
                    const tmp = *entry;
                    hm.max_distance_from_start_index = math.max(hm.max_distance_from_start_index,
                        distance_from_start_index);
                    *entry = Entry {
                        .used = true,
                        .distance_from_start_index = distance_from_start_index,
                        .key = key,
                        .value = value,
                    };
                    key = tmp.key;
                    value = tmp.value;
                    distance_from_start_index = tmp.distance_from_start_index;
                }
                continue;
            }

            if (!entry.used) {
                // adding an entry. otherwise overwriting old value with
                // same key
                hm.size += 1;
            }

            hm.max_distance_from_start_index = math.max(distance_from_start_index, hm.max_distance_from_start_index);
            *entry = Entry {
                .used = true,
                .distance_from_start_index = distance_from_start_index,
                .key = key,
                .value = value,
            };
            return;
        }
        @unreachable() // put into a full map
    }

    fn internalGet(hm: &Self, key: K) -> ?&Entry {
        const start_index = hm.keyToIndex(key);
        {var roll_over: usize = 0; while (roll_over <= hm.max_distance_from_start_index; roll_over += 1) {
            const index = (start_index + roll_over) % hm.entries.len;
            const entry = &hm.entries[index];

            if (!entry.used) return null;
            if (eql(entry.key, key)) return entry;
        }}
        return null;
    }

    fn keyToIndex(hm: &Self, key: K) -> usize {
        return usize(hash(key)) % hm.entries.len;
    }
}

fn basicHashMapTest() {
    @setFnTest(this, true);

    var map: HashMap(i32, i32, hash_i32, eql_i32) = undefined;
    map.init(&debug.global_allocator);
    defer map.deinit();

    %%map.put(1, 11);
    %%map.put(2, 22);
    %%map.put(3, 33);
    %%map.put(4, 44);
    %%map.put(5, 55);

    assert((??map.get(2)).value == 22);
    map.remove(2);
    assert(if (const entry ?= map.get(2)) false else true);
}

fn hash_i32(x: i32) -> u32 {
    *(&u32)(&x)
}
fn eql_i32(a: i32, b: i32) -> bool {
    a == b
}