1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const AtomicRmwOp = builtin.AtomicRmwOp;
const AtomicOrder = builtin.AtomicOrder;
const fs = std.event.fs;
const os = std.os;
const posix = os.posix;
const windows = os.windows;
const maxInt = std.math.maxInt;
pub const Loop = struct {
allocator: *mem.Allocator,
next_tick_queue: std.atomic.Queue(promise),
os_data: OsData,
final_resume_node: ResumeNode,
pending_event_count: usize,
extra_threads: []*os.Thread,
// pre-allocated eventfds. all permanently active.
// this is how we send promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
pub const NextTickNode = std.atomic.Queue(promise).Node;
pub const ResumeNode = struct {
id: Id,
handle: promise,
overlapped: Overlapped,
pub const overlapped_init = switch (builtin.os) {
builtin.Os.windows => windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.Offset = 0,
.OffsetHigh = 0,
.hEvent = null,
},
else => {},
};
pub const Overlapped = @typeOf(overlapped_init);
pub const Id = enum {
Basic,
Stop,
EventFd,
};
pub const EventFd = switch (builtin.os) {
builtin.Os.macosx, builtin.Os.freebsd => KEventFd,
builtin.Os.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
builtin.Os.windows => struct {
base: ResumeNode,
completion_key: usize,
},
else => @compileError("unsupported OS"),
};
const KEventFd = struct {
base: ResumeNode,
kevent: posix.Kevent,
};
pub const Basic = switch (builtin.os) {
builtin.Os.macosx, builtin.Os.freebsd => KEventBasic,
builtin.Os.linux => struct {
base: ResumeNode,
},
builtin.Os.windows => struct {
base: ResumeNode,
},
else => @compileError("unsupported OS"),
};
const KEventBasic = struct {
base: ResumeNode,
kev: posix.Kevent,
};
};
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
pub fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void {
return self.initInternal(allocator, 1);
}
/// The allocator must be thread-safe because we use it for multiplexing
/// coroutines onto kernel threads.
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
pub fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void {
const core_count = try os.cpuCount(allocator);
return self.initInternal(allocator, core_count);
}
/// Thread count is the total thread count. The thread pool size will be
/// max(thread_count - 1, 0)
fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void {
self.* = Loop{
.pending_event_count = 1,
.allocator = allocator,
.os_data = undefined,
.next_tick_queue = std.atomic.Queue(promise).init(),
.extra_threads = undefined,
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
.final_resume_node = ResumeNode{
.id = ResumeNode.Id.Stop,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
};
const extra_thread_count = thread_count - 1;
self.eventfd_resume_nodes = try self.allocator.alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
extra_thread_count,
);
errdefer self.allocator.free(self.eventfd_resume_nodes);
self.extra_threads = try self.allocator.alloc(*os.Thread, extra_thread_count);
errdefer self.allocator.free(self.extra_threads);
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
}
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.allocator.free(self.extra_threads);
}
const InitOsDataError = os.LinuxEpollCreateError || mem.Allocator.Error || os.LinuxEventFdError ||
os.SpawnThreadError || os.LinuxEpollCtlError || os.BsdKEventError ||
os.WindowsCreateIoCompletionPortError;
const wakeup_bytes = []u8{0x1} ** 8;
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
switch (builtin.os) {
builtin.Os.linux => {
self.os_data.fs_queue = std.atomic.Queue(fs.Request).init();
self.os_data.fs_queue_item = 0;
// we need another thread for the file system because Linux does not have an async
// file system I/O API.
self.os_data.fs_end_request = fs.RequestNode{
.prev = undefined,
.next = undefined,
.data = fs.Request{
.msg = fs.Request.Msg.End,
.finish = fs.Request.Finish.NoAction,
},
};
errdefer {
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
}
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.eventfd = try os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK),
.epoll_op = posix.EPOLL_CTL_ADD,
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
self.os_data.epollfd = try os.linuxEpollCreate(posix.EPOLL_CLOEXEC);
errdefer os.close(self.os_data.epollfd);
self.os_data.final_eventfd = try os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK);
errdefer os.close(self.os_data.final_eventfd);
self.os_data.final_eventfd_event = posix.epoll_event{
.events = posix.EPOLLIN,
.data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) },
};
try os.linuxEpollCtl(
self.os_data.epollfd,
posix.EPOLL_CTL_ADD,
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
self.os_data.fs_thread = try os.spawnThread(self, posixFsRun);
errdefer {
self.posixFsRequest(&self.os_data.fs_end_request);
self.os_data.fs_thread.wait();
}
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try os.spawnThread(self, workerRun);
}
},
builtin.Os.macosx, builtin.Os.freebsd => {
self.os_data.kqfd = try os.bsdKQueue();
errdefer os.close(self.os_data.kqfd);
self.os_data.fs_kqfd = try os.bsdKQueue();
errdefer os.close(self.os_data.fs_kqfd);
self.os_data.fs_queue = std.atomic.Queue(fs.Request).init();
// we need another thread for the file system because Darwin does not have an async
// file system I/O API.
self.os_data.fs_end_request = fs.RequestNode{
.prev = undefined,
.next = undefined,
.data = fs.Request{
.msg = fs.Request.Msg.End,
.finish = fs.Request.Finish.NoAction,
},
};
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = posix.Kevent{
.ident = i,
.filter = posix.EVFILT_USER,
.flags = posix.EV_CLEAR | posix.EV_ADD | posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent);
_ = try os.bsdKEvent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = posix.EV_CLEAR | posix.EV_ENABLE;
eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER;
}
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = posix.Kevent{
.ident = extra_thread_count,
.filter = posix.EVFILT_USER,
.flags = posix.EV_ADD | posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&self.final_resume_node),
};
const final_kev_arr = (*[1]posix.Kevent)(&self.os_data.final_kevent);
_ = try os.bsdKEvent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = posix.EV_ENABLE;
self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER;
self.os_data.fs_kevent_wake = posix.Kevent{
.ident = 0,
.filter = posix.EVFILT_USER,
.flags = posix.EV_ADD | posix.EV_ENABLE,
.fflags = posix.NOTE_TRIGGER,
.data = 0,
.udata = undefined,
};
self.os_data.fs_kevent_wait = posix.Kevent{
.ident = 0,
.filter = posix.EVFILT_USER,
.flags = posix.EV_ADD | posix.EV_CLEAR,
.fflags = 0,
.data = 0,
.udata = undefined,
};
self.os_data.fs_thread = try os.spawnThread(self, posixFsRun);
errdefer {
self.posixFsRequest(&self.os_data.fs_end_request);
self.os_data.fs_thread.wait();
}
var extra_thread_index: usize = 0;
errdefer {
_ = os.bsdKEvent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try os.spawnThread(self, workerRun);
}
},
builtin.Os.windows => {
self.os_data.io_port = try os.windowsCreateIoCompletionPort(
windows.INVALID_HANDLE_VALUE,
null,
undefined,
maxInt(windows.DWORD),
);
errdefer os.close(self.os_data.io_port);
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.completion_key = @ptrToInt(&eventfd_node.data.base),
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
var extra_thread_index: usize = 0;
errdefer {
var i: usize = 0;
while (i < extra_thread_index) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try os.spawnThread(self, workerRun);
}
},
else => {},
}
}
fn deinitOsData(self: *Loop) void {
switch (builtin.os) {
builtin.Os.linux => {
os.close(self.os_data.final_eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
os.close(self.os_data.epollfd);
self.allocator.free(self.eventfd_resume_nodes);
},
builtin.Os.macosx, builtin.Os.freebsd => {
os.close(self.os_data.kqfd);
os.close(self.os_data.fs_kqfd);
},
builtin.Os.windows => {
os.close(self.os_data.io_port);
},
else => {},
}
}
/// resume_node must live longer than the promise that it holds a reference to.
/// flags must contain EPOLLET
pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void {
assert(flags & posix.EPOLLET == posix.EPOLLET);
self.beginOneEvent();
errdefer self.finishOneEvent();
try self.linuxModFd(
fd,
posix.EPOLL_CTL_ADD,
flags,
resume_node,
);
}
pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void {
assert(flags & posix.EPOLLET == posix.EPOLLET);
var ev = os.linux.epoll_event{
.events = flags,
.data = os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) },
};
try os.linuxEpollCtl(self.os_data.epollfd, op, fd, &ev);
}
pub fn linuxRemoveFd(self: *Loop, fd: i32) void {
os.linuxEpollCtl(self.os_data.epollfd, os.linux.EPOLL_CTL_DEL, fd, undefined) catch {};
self.finishOneEvent();
}
pub async fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) !void {
defer self.linuxRemoveFd(fd);
suspend {
// TODO explicitly put this memory in the coroutine frame #1194
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = ResumeNode.Id.Basic,
.handle = @handle(),
.overlapped = ResumeNode.overlapped_init,
},
};
try self.linuxAddFd(fd, &resume_node.base, flags);
}
}
pub async fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, fflags: u32) !posix.Kevent {
// TODO #1194
suspend {
resume @handle();
}
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = ResumeNode.Id.Basic,
.handle = @handle(),
.overlapped = ResumeNode.overlapped_init,
},
.kev = undefined,
};
defer self.bsdRemoveKev(ident, filter);
suspend {
try self.bsdAddKev(&resume_node, ident, filter, fflags);
}
return resume_node.kev;
}
/// resume_node must live longer than the promise that it holds a reference to.
pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, fflags: u32) !void {
self.beginOneEvent();
errdefer self.finishOneEvent();
var kev = posix.Kevent{
.ident = ident,
.filter = filter,
.flags = posix.EV_ADD | posix.EV_ENABLE | posix.EV_CLEAR,
.fflags = fflags,
.data = 0,
.udata = @ptrToInt(&resume_node.base),
};
const kevent_array = (*[1]posix.Kevent)(&kev);
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
_ = try os.bsdKEvent(self.os_data.kqfd, kevent_array, empty_kevs, null);
}
pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void {
var kev = posix.Kevent{
.ident = ident,
.filter = filter,
.flags = posix.EV_DELETE,
.fflags = 0,
.data = 0,
.udata = 0,
};
const kevent_array = (*[1]posix.Kevent)(&kev);
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
_ = os.bsdKEvent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch undefined;
self.finishOneEvent();
}
fn dispatch(self: *Loop) void {
while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const next_tick_node = self.next_tick_queue.get() orelse {
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = next_tick_node.data;
switch (builtin.os) {
builtin.Os.macosx, builtin.Os.freebsd => {
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent);
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
_ = os.bsdKEvent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
builtin.Os.linux => {
// the pending count is already accounted for
const epoll_events = posix.EPOLLONESHOT | os.linux.EPOLLIN | os.linux.EPOLLOUT |
os.linux.EPOLLET;
self.linuxModFd(
eventfd_node.eventfd,
eventfd_node.epoll_op,
epoll_events,
&eventfd_node.base,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
builtin.Os.windows => {
os.windowsPostQueuedCompletionStatus(
self.os_data.io_port,
undefined,
undefined,
&eventfd_node.base.overlapped,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
else => @compileError("unsupported OS"),
}
}
}
/// Bring your own linked list node. This means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
self.beginOneEvent(); // finished in dispatch()
self.next_tick_queue.put(node);
self.dispatch();
}
pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void {
if (self.next_tick_queue.remove(node)) {
self.finishOneEvent();
}
}
pub fn run(self: *Loop) void {
self.finishOneEvent(); // the reference we start with
self.workerRun();
switch (builtin.os) {
builtin.Os.linux,
builtin.Os.macosx,
builtin.Os.freebsd,
=> self.os_data.fs_thread.wait(),
else => {},
}
for (self.extra_threads) |extra_thread| {
extra_thread.wait();
}
}
/// This is equivalent to an async call, except instead of beginning execution of the async function,
/// it immediately returns to the caller, and the async function is queued in the event loop. It still
/// returns a promise to be awaited.
pub fn call(self: *Loop, comptime func: var, args: ...) !(promise->@typeOf(func).ReturnType) {
const S = struct {
async fn asyncFunc(loop: *Loop, handle: *promise->@typeOf(func).ReturnType, args2: ...) @typeOf(func).ReturnType {
suspend {
handle.* = @handle();
var my_tick_node = Loop.NextTickNode{
.prev = undefined,
.next = undefined,
.data = @handle(),
};
loop.onNextTick(&my_tick_node);
}
// TODO guaranteed allocation elision for await in same func as async
return await (async func(args2) catch unreachable);
}
};
var handle: promise->@typeOf(func).ReturnType = undefined;
return async<self.allocator> S.asyncFunc(self, &handle, args);
}
/// Awaiting a yield lets the event loop run, starting any unstarted async operations.
/// Note that async operations automatically start when a function yields for any other reason,
/// for example, when async I/O is performed. This function is intended to be used only when
/// CPU bound tasks would be waiting in the event loop but never get started because no async I/O
/// is performed.
pub async fn yield(self: *Loop) void {
suspend {
var my_tick_node = Loop.NextTickNode{
.prev = undefined,
.next = undefined,
.data = @handle(),
};
self.onNextTick(&my_tick_node);
}
}
/// call finishOneEvent when done
pub fn beginOneEvent(self: *Loop) void {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
}
pub fn finishOneEvent(self: *Loop) void {
const prev = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
if (prev == 1) {
// cause all the threads to stop
switch (builtin.os) {
builtin.Os.linux => {
self.posixFsRequest(&self.os_data.fs_end_request);
// writing 8 bytes to an eventfd cannot fail
os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
return;
},
builtin.Os.macosx, builtin.Os.freebsd => {
self.posixFsRequest(&self.os_data.fs_end_request);
const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent);
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
// cannot fail because we already added it and this just enables it
_ = os.bsdKEvent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable;
return;
},
builtin.Os.windows => {
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
return;
},
else => @compileError("unsupported OS"),
}
}
}
fn workerRun(self: *Loop) void {
while (true) {
while (true) {
const next_tick_node = self.next_tick_queue.get() orelse break;
self.dispatch();
resume next_tick_node.data;
self.finishOneEvent();
}
switch (builtin.os) {
builtin.Os.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]os.linux.epoll_event = undefined;
const count = os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = posix.EPOLL_CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
self.finishOneEvent();
}
}
},
builtin.Os.macosx, builtin.Os.freebsd => {
var eventlist: [1]posix.Kevent = undefined;
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
const count = os.bsdKEvent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.udata);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {
const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node);
basic_node.kev = ev;
},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
self.finishOneEvent();
}
}
},
builtin.Os.windows => {
var completion_key: usize = undefined;
const overlapped = while (true) {
var nbytes: windows.DWORD = undefined;
var overlapped: ?*windows.OVERLAPPED = undefined;
switch (os.windowsGetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) {
os.WindowsWaitResult.Aborted => return,
os.WindowsWaitResult.Normal => {},
os.WindowsWaitResult.EOF => {},
os.WindowsWaitResult.Cancelled => continue,
}
if (overlapped) |o| break o;
} else unreachable; // TODO else unreachable should not be necessary
const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
self.finishOneEvent();
},
else => @compileError("unsupported OS"),
}
}
}
fn posixFsRequest(self: *Loop, request_node: *fs.RequestNode) void {
self.beginOneEvent(); // finished in posixFsRun after processing the msg
self.os_data.fs_queue.put(request_node);
switch (builtin.os) {
builtin.Os.macosx, builtin.Os.freebsd => {
const fs_kevs = (*[1]posix.Kevent)(&self.os_data.fs_kevent_wake);
const empty_kevs = ([*]posix.Kevent)(undefined)[0..0];
_ = os.bsdKEvent(self.os_data.fs_kqfd, fs_kevs, empty_kevs, null) catch unreachable;
},
builtin.Os.linux => {
_ = @atomicRmw(i32, &self.os_data.fs_queue_item, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
const rc = os.linux.futex_wake(&self.os_data.fs_queue_item, os.linux.FUTEX_WAKE, 1);
switch (os.linux.getErrno(rc)) {
0 => {},
posix.EINVAL => unreachable,
else => unreachable,
}
},
else => @compileError("Unsupported OS"),
}
}
fn posixFsCancel(self: *Loop, request_node: *fs.RequestNode) void {
if (self.os_data.fs_queue.remove(request_node)) {
self.finishOneEvent();
}
}
fn posixFsRun(self: *Loop) void {
while (true) {
if (builtin.os == builtin.Os.linux) {
_ = @atomicRmw(i32, &self.os_data.fs_queue_item, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
}
while (self.os_data.fs_queue.get()) |node| {
switch (node.data.msg) {
@TagType(fs.Request.Msg).End => return,
@TagType(fs.Request.Msg).PWriteV => |*msg| {
msg.result = os.posix_pwritev(msg.fd, msg.iov.ptr, msg.iov.len, msg.offset);
},
@TagType(fs.Request.Msg).PReadV => |*msg| {
msg.result = os.posix_preadv(msg.fd, msg.iov.ptr, msg.iov.len, msg.offset);
},
@TagType(fs.Request.Msg).Open => |*msg| {
msg.result = os.posixOpenC(msg.path.ptr, msg.flags, msg.mode);
},
@TagType(fs.Request.Msg).Close => |*msg| os.close(msg.fd),
@TagType(fs.Request.Msg).WriteFile => |*msg| blk: {
const flags = posix.O_LARGEFILE | posix.O_WRONLY | posix.O_CREAT |
posix.O_CLOEXEC | posix.O_TRUNC;
const fd = os.posixOpenC(msg.path.ptr, flags, msg.mode) catch |err| {
msg.result = err;
break :blk;
};
defer os.close(fd);
msg.result = os.posixWrite(fd, msg.contents);
},
}
switch (node.data.finish) {
@TagType(fs.Request.Finish).TickNode => |*tick_node| self.onNextTick(tick_node),
@TagType(fs.Request.Finish).DeallocCloseOperation => |close_op| {
self.allocator.destroy(close_op);
},
@TagType(fs.Request.Finish).NoAction => {},
}
self.finishOneEvent();
}
switch (builtin.os) {
builtin.Os.linux => {
const rc = os.linux.futex_wait(&self.os_data.fs_queue_item, os.linux.FUTEX_WAIT, 0, null);
switch (os.linux.getErrno(rc)) {
0, posix.EINTR, posix.EAGAIN => continue,
else => unreachable,
}
},
builtin.Os.macosx, builtin.Os.freebsd => {
const fs_kevs = (*[1]posix.Kevent)(&self.os_data.fs_kevent_wait);
var out_kevs: [1]posix.Kevent = undefined;
_ = os.bsdKEvent(self.os_data.fs_kqfd, fs_kevs, out_kevs[0..], null) catch unreachable;
},
else => @compileError("Unsupported OS"),
}
}
}
const OsData = switch (builtin.os) {
builtin.Os.linux => LinuxOsData,
builtin.Os.macosx, builtin.Os.freebsd => KEventData,
builtin.Os.windows => struct {
io_port: windows.HANDLE,
extra_thread_count: usize,
},
else => struct {},
};
const KEventData = struct {
kqfd: i32,
final_kevent: posix.Kevent,
fs_kevent_wake: posix.Kevent,
fs_kevent_wait: posix.Kevent,
fs_thread: *os.Thread,
fs_kqfd: i32,
fs_queue: std.atomic.Queue(fs.Request),
fs_end_request: fs.RequestNode,
};
const LinuxOsData = struct {
epollfd: i32,
final_eventfd: i32,
final_eventfd_event: os.linux.epoll_event,
fs_thread: *os.Thread,
fs_queue_item: i32,
fs_queue: std.atomic.Queue(fs.Request),
fs_end_request: fs.RequestNode,
};
};
test "std.event.Loop - basic" {
var da = std.heap.DirectAllocator.init();
defer da.deinit();
const allocator = &da.allocator;
var loop: Loop = undefined;
try loop.initMultiThreaded(allocator);
defer loop.deinit();
loop.run();
}
test "std.event.Loop - call" {
var da = std.heap.DirectAllocator.init();
defer da.deinit();
const allocator = &da.allocator;
var loop: Loop = undefined;
try loop.initMultiThreaded(allocator);
defer loop.deinit();
var did_it = false;
const handle = try loop.call(testEventLoop);
const handle2 = try loop.call(testEventLoop2, handle, &did_it);
defer cancel handle2;
loop.run();
assert(did_it);
}
async fn testEventLoop() i32 {
return 1234;
}
async fn testEventLoop2(h: promise->i32, did_it: *bool) void {
const value = await h;
assert(value == 1234);
did_it.* = true;
}
|