aboutsummaryrefslogtreecommitdiff
path: root/std/atomic/queue_mpsc.zig
blob: bc0a94258b48fb9eefcda7382c5c21e93879a16c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
const std = @import("../index.zig");
const assert = std.debug.assert;
const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
const AtomicRmwOp = builtin.AtomicRmwOp;

/// Many producer, single consumer, non-allocating, thread-safe, lock-free
pub fn QueueMpsc(comptime T: type) type {
    return struct {
        inboxes: [2]std.atomic.Stack(T),
        outbox: std.atomic.Stack(T),
        inbox_index: usize,

        pub const Self = this;

        pub const Node = std.atomic.Stack(T).Node;

        /// Not thread-safe. The call to init() must complete before any other functions are called.
        /// No deinitialization required.
        pub fn init() Self {
            return Self{
                .inboxes = []std.atomic.Stack(T){
                    std.atomic.Stack(T).init(),
                    std.atomic.Stack(T).init(),
                },
                .outbox = std.atomic.Stack(T).init(),
                .inbox_index = 0,
            };
        }

        /// Fully thread-safe. put() may be called from any thread at any time.
        pub fn put(self: *Self, node: *Node) void {
            const inbox_index = @atomicLoad(usize, &self.inbox_index, AtomicOrder.SeqCst);
            const inbox = &self.inboxes[inbox_index];
            inbox.push(node);
        }

        /// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
        /// the next call to get().
        pub fn get(self: *Self) ?*Node {
            if (self.outbox.pop()) |node| {
                return node;
            }
            const prev_inbox_index = @atomicRmw(usize, &self.inbox_index, AtomicRmwOp.Xor, 0x1, AtomicOrder.SeqCst);
            const prev_inbox = &self.inboxes[prev_inbox_index];
            while (prev_inbox.pop()) |node| {
                self.outbox.push(node);
            }
            return self.outbox.pop();
        }

        /// Must be called by only 1 consumer at a time. Every call to get() and isEmpty() must complete before
        /// the next call to isEmpty().
        pub fn isEmpty(self: *Self) bool {
            if (!self.outbox.isEmpty()) return false;
            const prev_inbox_index = @atomicRmw(usize, &self.inbox_index, AtomicRmwOp.Xor, 0x1, AtomicOrder.SeqCst);
            const prev_inbox = &self.inboxes[prev_inbox_index];
            while (prev_inbox.pop()) |node| {
                self.outbox.push(node);
            }
            return self.outbox.isEmpty();
        }
    };
}

const Context = struct {
    allocator: *std.mem.Allocator,
    queue: *QueueMpsc(i32),
    put_sum: isize,
    get_sum: isize,
    get_count: usize,
    puts_done: u8, // TODO make this a bool
};

// TODO add lazy evaluated build options and then put puts_per_thread behind
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
// CI we would use a less aggressive setting since at 1 core, while we still
// want this test to pass, we need a smaller value since there is so much thrashing
// we would also use a less aggressive setting when running in valgrind
const puts_per_thread = 500;
const put_thread_count = 3;

test "std.atomic.queue_mpsc" {
    var direct_allocator = std.heap.DirectAllocator.init();
    defer direct_allocator.deinit();

    var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024);
    defer direct_allocator.allocator.free(plenty_of_memory);

    var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
    var a = &fixed_buffer_allocator.allocator;

    var queue = QueueMpsc(i32).init();
    var context = Context{
        .allocator = a,
        .queue = &queue,
        .put_sum = 0,
        .get_sum = 0,
        .puts_done = 0,
        .get_count = 0,
    };

    var putters: [put_thread_count]*std.os.Thread = undefined;
    for (putters) |*t| {
        t.* = try std.os.spawnThread(&context, startPuts);
    }
    var getters: [1]*std.os.Thread = undefined;
    for (getters) |*t| {
        t.* = try std.os.spawnThread(&context, startGets);
    }

    for (putters) |t|
        t.wait();
    _ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
    for (getters) |t|
        t.wait();

    if (context.put_sum != context.get_sum) {
        std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum);
    }

    if (context.get_count != puts_per_thread * put_thread_count) {
        std.debug.panic(
            "failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}",
            context.get_count,
            u32(puts_per_thread),
            u32(put_thread_count),
        );
    }
}

fn startPuts(ctx: *Context) u8 {
    var put_count: usize = puts_per_thread;
    var r = std.rand.DefaultPrng.init(0xdeadbeef);
    while (put_count != 0) : (put_count -= 1) {
        std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
        const x = @bitCast(i32, r.random.scalar(u32));
        const node = ctx.allocator.create(QueueMpsc(i32).Node{
            .next = undefined,
            .data = x,
        }) catch unreachable;
        ctx.queue.put(node);
        _ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst);
    }
    return 0;
}

fn startGets(ctx: *Context) u8 {
    while (true) {
        const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1;

        while (ctx.queue.get()) |node| {
            std.os.time.sleep(0, 1); // let the os scheduler be our fuzz
            _ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst);
            _ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst);
        }

        if (last) return 0;
    }
}