1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "util.hpp"
#include "stage2.h"
#include <stdio.h>
#include <stdarg.h>
void zig_panic(const char *format, ...) {
va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
fflush(stderr);
va_end(ap);
stage2_panic("", 0);
abort();
}
uint32_t int_hash(int i) {
return (uint32_t)(i % UINT32_MAX);
}
bool int_eq(int a, int b) {
return a == b;
}
uint32_t uint64_hash(uint64_t i) {
return (uint32_t)(i % UINT32_MAX);
}
bool uint64_eq(uint64_t a, uint64_t b) {
return a == b;
}
uint32_t ptr_hash(const void *ptr) {
return (uint32_t)(((uintptr_t)ptr) % UINT32_MAX);
}
bool ptr_eq(const void *a, const void *b) {
return a == b;
}
// Ported from std/mem.zig.
bool SplitIterator_isSplitByte(SplitIterator *self, uint8_t byte) {
for (size_t i = 0; i < self->split_bytes.len; i += 1) {
if (byte == self->split_bytes.ptr[i]) {
return true;
}
}
return false;
}
// Ported from std/mem.zig.
Optional<Slice<uint8_t>> SplitIterator_next(SplitIterator *self) {
// move to beginning of token
while (self->index < self->buffer.len &&
SplitIterator_isSplitByte(self, self->buffer.ptr[self->index]))
{
self->index += 1;
}
size_t start = self->index;
if (start == self->buffer.len) {
return {};
}
// move to end of token
while (self->index < self->buffer.len &&
!SplitIterator_isSplitByte(self, self->buffer.ptr[self->index]))
{
self->index += 1;
}
size_t end = self->index;
return Optional<Slice<uint8_t>>::some(self->buffer.slice(start, end));
}
// Ported from std/mem.zig.
// This one won't collapse multiple separators into one, so you could use it, for example,
// to parse Comma Separated Value format.
Optional<Slice<uint8_t>> SplitIterator_next_separate(SplitIterator *self) {
// move to beginning of token
if (self->index < self->buffer.len &&
SplitIterator_isSplitByte(self, self->buffer.ptr[self->index]))
{
self->index += 1;
}
size_t start = self->index;
if (start == self->buffer.len) {
return {};
}
// move to end of token
while (self->index < self->buffer.len &&
!SplitIterator_isSplitByte(self, self->buffer.ptr[self->index]))
{
self->index += 1;
}
size_t end = self->index;
return Optional<Slice<uint8_t>>::some(self->buffer.slice(start, end));
}
// Ported from std/mem.zig
Slice<uint8_t> SplitIterator_rest(SplitIterator *self) {
// move to beginning of token
size_t index = self->index;
while (index < self->buffer.len && SplitIterator_isSplitByte(self, self->buffer.ptr[index])) {
index += 1;
}
return self->buffer.sliceFrom(index);
}
// Ported from std/mem.zig
SplitIterator memSplit(Slice<uint8_t> buffer, Slice<uint8_t> split_bytes) {
return SplitIterator{0, buffer, split_bytes};
}
void zig_pretty_print_bytes(FILE *f, double n) {
if (n > 1024.0 * 1024.0 * 1024.0) {
fprintf(f, "%.03f GiB", n / 1024.0 / 1024.0 / 1024.0);
return;
}
if (n > 1024.0 * 1024.0) {
fprintf(f, "%.03f MiB", n / 1024.0 / 1024.0);
return;
}
if (n > 1024.0) {
fprintf(f, "%.03f KiB", n / 1024.0);
return;
}
fprintf(f, "%.03f bytes", n );
return;
}
|