1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/*
* Copyright (c) 2020 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#ifndef ZIG_MEM_HPP
#define ZIG_MEM_HPP
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "util_base.hpp"
#include "mem_type_info.hpp"
//
// -- Memory Allocation General Notes --
//
// `heap::c_allocator` is the preferred general allocator.
//
// `heap::bootstrap_allocator` is an implementation detail for use
// by allocators themselves when incidental heap may be required for
// profiling and statistics. It breaks the infinite recursion cycle.
//
// `mem::os` contains a raw wrapper for system malloc API used in
// preference to calling ::{malloc, free, calloc, realloc} directly.
// This isolates usage and helps with audits:
//
// mem::os::malloc
// mem::os::free
// mem::os::calloc
// mem::os::realloc
//
namespace mem {
// initialize mem module before any use
void init();
// deinitialize mem module to free memory and print report
void deinit();
// isolate system/libc allocators
namespace os {
ATTRIBUTE_RETURNS_NOALIAS
inline void *malloc(size_t size) {
#ifndef NDEBUG
// make behavior when size == 0 portable
if (size == 0)
return nullptr;
#endif
auto ptr = ::malloc(size);
if (ptr == nullptr)
zig_panic("allocation failed");
return ptr;
}
inline void free(void *ptr) {
::free(ptr);
}
ATTRIBUTE_RETURNS_NOALIAS
inline void *calloc(size_t count, size_t size) {
#ifndef NDEBUG
// make behavior when size == 0 portable
if (count == 0 || size == 0)
return nullptr;
#endif
auto ptr = ::calloc(count, size);
if (ptr == nullptr)
zig_panic("allocation failed");
return ptr;
}
inline void *realloc(void *old_ptr, size_t size) {
#ifndef NDEBUG
// make behavior when size == 0 portable
if (old_ptr == nullptr && size == 0)
return nullptr;
#endif
auto ptr = ::realloc(old_ptr, size);
if (ptr == nullptr)
zig_panic("allocation failed");
return ptr;
}
} // namespace os
struct Allocator {
virtual void destruct(Allocator *allocator) = 0;
template <typename T> ATTRIBUTE_RETURNS_NOALIAS
T *allocate(size_t count) {
return reinterpret_cast<T *>(this->internal_allocate(TypeInfo::make<T>(), count));
}
template <typename T> ATTRIBUTE_RETURNS_NOALIAS
T *allocate_nonzero(size_t count) {
return reinterpret_cast<T *>(this->internal_allocate_nonzero(TypeInfo::make<T>(), count));
}
template <typename T>
T *reallocate(T *old_ptr, size_t old_count, size_t new_count) {
return reinterpret_cast<T *>(this->internal_reallocate(TypeInfo::make<T>(), old_ptr, old_count, new_count));
}
template <typename T>
T *reallocate_nonzero(T *old_ptr, size_t old_count, size_t new_count) {
return reinterpret_cast<T *>(this->internal_reallocate_nonzero(TypeInfo::make<T>(), old_ptr, old_count, new_count));
}
template<typename T>
void deallocate(T *ptr, size_t count) {
this->internal_deallocate(TypeInfo::make<T>(), ptr, count);
}
template<typename T>
T *create() {
return reinterpret_cast<T *>(this->internal_allocate(TypeInfo::make<T>(), 1));
}
template<typename T>
void destroy(T *ptr) {
this->internal_deallocate(TypeInfo::make<T>(), ptr, 1);
}
protected:
ATTRIBUTE_RETURNS_NOALIAS virtual void *internal_allocate(const TypeInfo &info, size_t count) = 0;
ATTRIBUTE_RETURNS_NOALIAS virtual void *internal_allocate_nonzero(const TypeInfo &info, size_t count) = 0;
virtual void *internal_reallocate(const TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) = 0;
virtual void *internal_reallocate_nonzero(const TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) = 0;
virtual void internal_deallocate(const TypeInfo &info, void *ptr, size_t count) = 0;
};
} // namespace mem
#endif
|