1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
//! SPIR-V Spec documentation: https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html
//! According to above documentation, a SPIR-V module has the following logical layout:
//! Header.
//! OpCapability instructions.
//! OpExtension instructions.
//! OpExtInstImport instructions.
//! A single OpMemoryModel instruction.
//! All entry points, declared with OpEntryPoint instructions.
//! All execution-mode declarators; OpExecutionMode and OpExecutionModeId instructions.
//! Debug instructions:
//! - First, OpString, OpSourceExtension, OpSource, OpSourceContinued (no forward references).
//! - OpName and OpMemberName instructions.
//! - OpModuleProcessed instructions.
//! All annotation (decoration) instructions.
//! All type declaration instructions, constant instructions, global variable declarations, (preferably) OpUndef instructions.
//! All function declarations without a body (extern functions presumably).
//! All regular functions.
// Because SPIR-V requires re-compilation anyway, and so hot swapping will not work
// anyway, we simply generate all the code in flushModule. This keeps
// things considerably simpler.
const SpirV = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const log = std.log.scoped(.link);
const Path = std.Build.Cache.Path;
const Zcu = @import("../Zcu.zig");
const InternPool = @import("../InternPool.zig");
const Compilation = @import("../Compilation.zig");
const link = @import("../link.zig");
const codegen = @import("../codegen/spirv.zig");
const trace = @import("../tracy.zig").trace;
const build_options = @import("build_options");
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const SpvModule = @import("../codegen/spirv/Module.zig");
const Section = @import("../codegen/spirv/Section.zig");
const spec = @import("../codegen/spirv/spec.zig");
const IdResult = spec.IdResult;
const Word = spec.Word;
const BinaryModule = @import("SpirV/BinaryModule.zig");
base: link.File,
object: codegen.Object,
pub fn createEmpty(
arena: Allocator,
comp: *Compilation,
emit: Path,
options: link.File.OpenOptions,
) !*SpirV {
const gpa = comp.gpa;
const target = comp.root_mod.resolved_target.result;
assert(!comp.config.use_lld); // Caught by Compilation.Config.resolve
assert(!comp.config.use_llvm); // Caught by Compilation.Config.resolve
assert(target.ofmt == .spirv); // Caught by Compilation.Config.resolve
switch (target.cpu.arch) {
.spirv, .spirv32, .spirv64 => {},
else => unreachable, // Caught by Compilation.Config.resolve.
}
switch (target.os.tag) {
.opencl, .opengl, .vulkan => {},
else => unreachable, // Caught by Compilation.Config.resolve.
}
const self = try arena.create(SpirV);
self.* = .{
.base = .{
.tag = .spirv,
.comp = comp,
.emit = emit,
.gc_sections = options.gc_sections orelse false,
.print_gc_sections = options.print_gc_sections,
.stack_size = options.stack_size orelse 0,
.allow_shlib_undefined = options.allow_shlib_undefined orelse false,
.file = null,
.disable_lld_caching = options.disable_lld_caching,
.build_id = options.build_id,
},
.object = codegen.Object.init(gpa, comp.getTarget()),
};
errdefer self.deinit();
// TODO: read the file and keep valid parts instead of truncating
self.base.file = try emit.root_dir.handle.createFile(emit.sub_path, .{
.truncate = true,
.read = true,
});
return self;
}
pub fn open(
arena: Allocator,
comp: *Compilation,
emit: Path,
options: link.File.OpenOptions,
) !*SpirV {
return createEmpty(arena, comp, emit, options);
}
pub fn deinit(self: *SpirV) void {
self.object.deinit();
}
pub fn updateFunc(
self: *SpirV,
pt: Zcu.PerThread,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
) link.File.UpdateNavError!void {
if (build_options.skip_non_native) {
@panic("Attempted to compile for architecture that was disabled by build configuration");
}
const ip = &pt.zcu.intern_pool;
const func = pt.zcu.funcInfo(func_index);
log.debug("lowering function {}", .{ip.getNav(func.owner_nav).name.fmt(ip)});
try self.object.updateFunc(pt, func_index, air, liveness);
}
pub fn updateNav(self: *SpirV, pt: Zcu.PerThread, nav: InternPool.Nav.Index) link.File.UpdateNavError!void {
if (build_options.skip_non_native) {
@panic("Attempted to compile for architecture that was disabled by build configuration");
}
const ip = &pt.zcu.intern_pool;
log.debug("lowering nav {}({d})", .{ ip.getNav(nav).fqn.fmt(ip), nav });
try self.object.updateNav(pt, nav);
}
pub fn updateExports(
self: *SpirV,
pt: Zcu.PerThread,
exported: Zcu.Exported,
export_indices: []const Zcu.Export.Index,
) !void {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const nav_index = switch (exported) {
.nav => |nav| nav,
.uav => |uav| {
_ = uav;
@panic("TODO: implement SpirV linker code for exporting a constant value");
},
};
const nav_ty = ip.getNav(nav_index).typeOf(ip);
const target = zcu.getTarget();
if (ip.isFunctionType(nav_ty)) {
const spv_decl_index = try self.object.resolveNav(zcu, nav_index);
const cc = Type.fromInterned(nav_ty).fnCallingConvention(zcu);
const execution_model: spec.ExecutionModel = switch (target.os.tag) {
.vulkan, .opengl => switch (cc) {
.spirv_vertex => .Vertex,
.spirv_fragment => .Fragment,
.spirv_kernel => .GLCompute,
// TODO: We should integrate with the Linkage capability and export this function
.spirv_device => return,
else => unreachable,
},
.opencl => switch (cc) {
.spirv_kernel => .Kernel,
// TODO: We should integrate with the Linkage capability and export this function
.spirv_device => return,
else => unreachable,
},
else => unreachable,
};
for (export_indices) |export_idx| {
const exp = export_idx.ptr(zcu);
try self.object.spv.declareEntryPoint(
spv_decl_index,
exp.opts.name.toSlice(ip),
execution_model,
);
}
}
// TODO: Export regular functions, variables, etc using Linkage attributes.
}
pub fn flush(self: *SpirV, arena: Allocator, tid: Zcu.PerThread.Id, prog_node: std.Progress.Node) link.File.FlushError!void {
return self.flushModule(arena, tid, prog_node);
}
pub fn flushModule(
self: *SpirV,
arena: Allocator,
tid: Zcu.PerThread.Id,
prog_node: std.Progress.Node,
) link.File.FlushError!void {
// The goal is to never use this because it's only needed if we need to
// write to InternPool, but flushModule is too late to be writing to the
// InternPool.
_ = tid;
if (build_options.skip_non_native) {
@panic("Attempted to compile for architecture that was disabled by build configuration");
}
const tracy = trace(@src());
defer tracy.end();
const sub_prog_node = prog_node.start("Flush Module", 0);
defer sub_prog_node.end();
const comp = self.base.comp;
const spv = &self.object.spv;
const diags = &comp.link_diags;
const gpa = comp.gpa;
// We need to export the list of error names somewhere so that we can pretty-print them in the
// executor. This is not really an important thing though, so we can just dump it in any old
// nonsemantic instruction. For now, just put it in OpSourceExtension with a special name.
var error_info = std.ArrayList(u8).init(self.object.gpa);
defer error_info.deinit();
try error_info.appendSlice("zig_errors:");
const ip = &self.base.comp.zcu.?.intern_pool;
for (ip.global_error_set.getNamesFromMainThread()) |name| {
// Errors can contain pretty much any character - to encode them in a string we must escape
// them somehow. Easiest here is to use some established scheme, one which also preseves the
// name if it contains no strange characters is nice for debugging. URI encoding fits the bill.
// We're using : as separator, which is a reserved character.
try error_info.append(':');
try std.Uri.Component.percentEncode(
error_info.writer(),
name.toSlice(ip),
struct {
fn isValidChar(c: u8) bool {
return switch (c) {
0, '%', ':' => false,
else => true,
};
}
}.isValidChar,
);
}
try spv.sections.debug_strings.emit(gpa, .OpSourceExtension, .{
.extension = error_info.items,
});
const module = try spv.finalize(arena);
errdefer arena.free(module);
const linked_module = self.linkModule(arena, module, sub_prog_node) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => |other| return diags.fail("error while linking: {s}", .{@errorName(other)}),
};
self.base.file.?.writeAll(std.mem.sliceAsBytes(linked_module)) catch |err|
return diags.fail("failed to write: {s}", .{@errorName(err)});
}
fn linkModule(self: *SpirV, a: Allocator, module: []Word, progress: std.Progress.Node) ![]Word {
_ = self;
const lower_invocation_globals = @import("SpirV/lower_invocation_globals.zig");
const prune_unused = @import("SpirV/prune_unused.zig");
const dedup = @import("SpirV/deduplicate.zig");
var parser = try BinaryModule.Parser.init(a);
defer parser.deinit();
var binary = try parser.parse(module);
try lower_invocation_globals.run(&parser, &binary, progress);
try prune_unused.run(&parser, &binary, progress);
try dedup.run(&parser, &binary, progress);
return binary.finalize(a);
}
|