1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
const std = @import("std");
const testing = std.testing;
const mem = std.mem;
const assert = std.debug.assert;
const ArrayList = std.ArrayList;
const Allocator = std.mem.Allocator;
const DW = std.dwarf;
// zig fmt: off
/// Definitions of all of the x64 registers. The order is semantically meaningful.
/// The registers are defined such that IDs go in descending order of 64-bit,
/// 32-bit, 16-bit, and then 8-bit, and each set contains exactly sixteen
/// registers. This results in some useful properties:
///
/// Any 64-bit register can be turned into its 32-bit form by adding 16, and
/// vice versa. This also works between 32-bit and 16-bit forms. With 8-bit, it
/// works for all except for sp, bp, si, and di, which do *not* have an 8-bit
/// form.
///
/// If (register & 8) is set, the register is extended.
///
/// The ID can be easily determined by figuring out what range the register is
/// in, and then subtracting the base.
pub const Register = enum(u8) {
// 0 through 15, 64-bit registers. 8-15 are extended.
// id is just the int value.
rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi,
r8, r9, r10, r11, r12, r13, r14, r15,
// 16 through 31, 32-bit registers. 24-31 are extended.
// id is int value - 16.
eax, ecx, edx, ebx, esp, ebp, esi, edi,
r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d,
// 32-47, 16-bit registers. 40-47 are extended.
// id is int value - 32.
ax, cx, dx, bx, sp, bp, si, di,
r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w,
// 48-63, 8-bit registers. 56-63 are extended.
// id is int value - 48.
al, cl, dl, bl, ah, ch, dh, bh,
r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b,
/// Returns the bit-width of the register.
pub fn size(self: Register) u7 {
return switch (@enumToInt(self)) {
0...15 => 64,
16...31 => 32,
32...47 => 16,
48...64 => 8,
else => unreachable,
};
}
/// Returns whether the register is *extended*. Extended registers are the
/// new registers added with amd64, r8 through r15. This also includes any
/// other variant of access to those registers, such as r8b, r15d, and so
/// on. This is needed because access to these registers requires special
/// handling via the REX prefix, via the B or R bits, depending on context.
pub fn isExtended(self: Register) bool {
return @enumToInt(self) & 0x08 != 0;
}
/// This returns the 4-bit register ID, which is used in practically every
/// opcode. Note that bit 3 (the highest bit) is *never* used directly in
/// an instruction (@see isExtended), and requires special handling. The
/// lower three bits are often embedded directly in instructions (such as
/// the B8 variant of moves), or used in R/M bytes.
pub fn id(self: Register) u4 {
return @truncate(u4, @enumToInt(self));
}
/// Like id, but only returns the lower 3 bits.
pub fn low_id(self: Register) u3 {
return @truncate(u3, @enumToInt(self));
}
/// Returns the index into `callee_preserved_regs`.
pub fn allocIndex(self: Register) ?u4 {
return switch (self) {
.rax, .eax, .ax, .al => 0,
.rcx, .ecx, .cx, .cl => 1,
.rdx, .edx, .dx, .dl => 2,
.rsi, .esi, .si => 3,
.rdi, .edi, .di => 4,
.r8, .r8d, .r8w, .r8b => 5,
.r9, .r9d, .r9w, .r9b => 6,
.r10, .r10d, .r10w, .r10b => 7,
.r11, .r11d, .r11w, .r11b => 8,
else => null,
};
}
/// Convert from any register to its 64 bit alias.
pub fn to64(self: Register) Register {
return @intToEnum(Register, self.id());
}
/// Convert from any register to its 32 bit alias.
pub fn to32(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 16);
}
/// Convert from any register to its 16 bit alias.
pub fn to16(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 32);
}
/// Convert from any register to its 8 bit alias.
pub fn to8(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 48);
}
pub fn dwarfLocOp(self: Register) u8 {
return switch (self.to64()) {
.rax => DW.OP.reg0,
.rdx => DW.OP.reg1,
.rcx => DW.OP.reg2,
.rbx => DW.OP.reg3,
.rsi => DW.OP.reg4,
.rdi => DW.OP.reg5,
.rbp => DW.OP.reg6,
.rsp => DW.OP.reg7,
.r8 => DW.OP.reg8,
.r9 => DW.OP.reg9,
.r10 => DW.OP.reg10,
.r11 => DW.OP.reg11,
.r12 => DW.OP.reg12,
.r13 => DW.OP.reg13,
.r14 => DW.OP.reg14,
.r15 => DW.OP.reg15,
else => unreachable,
};
}
};
// zig fmt: on
/// These registers belong to the called function.
pub const callee_preserved_regs = [_]Register{ .rax, .rcx, .rdx, .rsi, .rdi, .r8, .r9, .r10, .r11 };
pub const c_abi_int_param_regs = [_]Register{ .rdi, .rsi, .rdx, .rcx, .r8, .r9 };
pub const c_abi_int_return_regs = [_]Register{ .rax, .rdx };
/// Encoding helper functions for x86_64 instructions
///
/// Many of these helpers do very little, but they can help make things
/// slightly more readable with more descriptive field names / function names.
///
/// Some of them also have asserts to ensure that we aren't doing dumb things.
/// For example, trying to use register 4 (esp) in an indirect modr/m byte is illegal,
/// you need to encode it with an SIB byte.
///
/// Note that ALL of these helper functions will assume capacity,
/// so ensure that the `code` has sufficient capacity before using them.
/// The `init` method is the recommended way to ensure capacity.
pub const Encoder = struct {
/// Non-owning reference to the code array
code: *ArrayList(u8),
const Self = @This();
/// Wrap `code` in Encoder to make it easier to call these helper functions
///
/// maximum_inst_size should contain the maximum number of bytes
/// that the encoded instruction will take.
/// This is because the helper functions will assume capacity
/// in order to avoid bounds checking.
pub fn init(code: *ArrayList(u8), maximum_inst_size: u8) !Self {
try code.ensureUnusedCapacity(maximum_inst_size);
return Self{ .code = code };
}
/// Directly write a number to the code array with big endianness
pub fn writeIntBig(self: Self, comptime T: type, value: T) void {
mem.writeIntBig(
T,
self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)),
value,
);
}
/// Directly write a number to the code array with little endianness
pub fn writeIntLittle(self: Self, comptime T: type, value: T) void {
mem.writeIntLittle(
T,
self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)),
value,
);
}
// --------
// Prefixes
// --------
pub const LegacyPrefixes = packed struct {
/// LOCK
prefix_f0: bool = false,
/// REPNZ, REPNE, REP, Scalar Double-precision
prefix_f2: bool = false,
/// REPZ, REPE, REP, Scalar Single-precision
prefix_f3: bool = false,
/// CS segment override or Branch not taken
prefix_2e: bool = false,
/// DS segment override
prefix_36: bool = false,
/// ES segment override
prefix_26: bool = false,
/// FS segment override
prefix_64: bool = false,
/// GS segment override
prefix_65: bool = false,
/// Branch taken
prefix_3e: bool = false,
/// Operand size override (enables 16 bit operation)
prefix_66: bool = false,
/// Address size override (enables 16 bit address size)
prefix_67: bool = false,
padding: u5 = 0,
};
/// Encodes legacy prefixes
pub fn legacyPrefixes(self: Self, prefixes: LegacyPrefixes) void {
if (@bitCast(u16, prefixes) != 0) {
// Hopefully this path isn't taken very often, so we'll do it the slow way for now
// LOCK
if (prefixes.prefix_f0) self.code.appendAssumeCapacity(0xf0);
// REPNZ, REPNE, REP, Scalar Double-precision
if (prefixes.prefix_f2) self.code.appendAssumeCapacity(0xf2);
// REPZ, REPE, REP, Scalar Single-precision
if (prefixes.prefix_f3) self.code.appendAssumeCapacity(0xf3);
// CS segment override or Branch not taken
if (prefixes.prefix_2e) self.code.appendAssumeCapacity(0x2e);
// DS segment override
if (prefixes.prefix_36) self.code.appendAssumeCapacity(0x36);
// ES segment override
if (prefixes.prefix_26) self.code.appendAssumeCapacity(0x26);
// FS segment override
if (prefixes.prefix_64) self.code.appendAssumeCapacity(0x64);
// GS segment override
if (prefixes.prefix_65) self.code.appendAssumeCapacity(0x65);
// Branch taken
if (prefixes.prefix_3e) self.code.appendAssumeCapacity(0x3e);
// Operand size override
if (prefixes.prefix_66) self.code.appendAssumeCapacity(0x66);
// Address size override
if (prefixes.prefix_67) self.code.appendAssumeCapacity(0x67);
}
}
/// Use 16 bit operand size
///
/// Note that this flag is overridden by REX.W, if both are present.
pub fn prefix16BitMode(self: Self) void {
self.code.appendAssumeCapacity(0x66);
}
/// From section 2.2.1.2 of the manual, REX is encoded as b0100WRXB
pub const Rex = struct {
/// Wide, enables 64-bit operation
w: bool = false,
/// Extends the reg field in the ModR/M byte
r: bool = false,
/// Extends the index field in the SIB byte
x: bool = false,
/// Extends the r/m field in the ModR/M byte,
/// or the base field in the SIB byte,
/// or the reg field in the Opcode byte
b: bool = false,
};
/// Encodes a REX prefix byte given all the fields
///
/// Use this byte whenever you need 64 bit operation,
/// or one of reg, index, r/m, base, or opcode-reg might be extended.
///
/// See struct `Rex` for a description of each field.
///
/// Does not add a prefix byte if none of the fields are set!
pub fn rex(self: Self, byte: Rex) void {
var value: u8 = 0b0100_0000;
if (byte.w) value |= 0b1000;
if (byte.r) value |= 0b0100;
if (byte.x) value |= 0b0010;
if (byte.b) value |= 0b0001;
if (value != 0b0100_0000) {
self.code.appendAssumeCapacity(value);
}
}
// ------
// Opcode
// ------
/// Encodes a 1 byte opcode
pub fn opcode_1byte(self: Self, opcode: u8) void {
self.code.appendAssumeCapacity(opcode);
}
/// Encodes a 2 byte opcode
///
/// e.g. IMUL has the opcode 0x0f 0xaf, so you use
///
/// encoder.opcode_2byte(0x0f, 0xaf);
pub fn opcode_2byte(self: Self, prefix: u8, opcode: u8) void {
self.code.appendAssumeCapacity(prefix);
self.code.appendAssumeCapacity(opcode);
}
/// Encodes a 1 byte opcode with a reg field
///
/// Remember to add a REX prefix byte if reg is extended!
pub fn opcode_withReg(self: Self, opcode: u8, reg: u3) void {
assert(opcode & 0b111 == 0);
self.code.appendAssumeCapacity(opcode | reg);
}
// ------
// ModR/M
// ------
/// Construct a ModR/M byte given all the fields
///
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm(self: Self, mod: u2, reg_or_opx: u3, rm: u3) void {
self.code.appendAssumeCapacity(
@as(u8, mod) << 6 | @as(u8, reg_or_opx) << 3 | rm,
);
}
/// Construct a ModR/M byte using direct r/m addressing
/// r/m effective address: r/m
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_direct(self: Self, reg_or_opx: u3, rm: u3) void {
self.modRm(0b11, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect r/m addressing
/// r/m effective address: [r/m]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp0(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4 and rm != 5);
self.modRm(0b00, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB addressing
/// r/m effective address: [SIB]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp0(self: Self, reg_or_opx: u3) void {
self.modRm(0b00, reg_or_opx, 0b100);
}
/// Construct a ModR/M byte using RIP-relative addressing
/// r/m effective address: [RIP + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_RIPDisp32(self: Self, reg_or_opx: u3) void {
self.modRm(0b00, reg_or_opx, 0b101);
}
/// Construct a ModR/M byte using indirect r/m with a 8bit displacement
/// r/m effective address: [r/m + disp8]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp8(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4);
self.modRm(0b01, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB with a 8bit displacement
/// r/m effective address: [SIB + disp8]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp8(self: Self, reg_or_opx: u3) void {
self.modRm(0b01, reg_or_opx, 0b100);
}
/// Construct a ModR/M byte using indirect r/m with a 32bit displacement
/// r/m effective address: [r/m + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp32(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4);
self.modRm(0b10, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB with a 32bit displacement
/// r/m effective address: [SIB + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp32(self: Self, reg_or_opx: u3) void {
self.modRm(0b10, reg_or_opx, 0b100);
}
// ---
// SIB
// ---
/// Construct a SIB byte given all the fields
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib(self: Self, scale: u2, index: u3, base: u3) void {
self.code.appendAssumeCapacity(
@as(u8, scale) << 6 | @as(u8, index) << 3 | base,
);
}
/// Construct a SIB byte with scale * index + base, no frills.
/// r/m effective address: [base + scale * index]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBase(self: Self, scale: u2, index: u3, base: u3) void {
assert(base != 5);
self.sib(scale, index, base);
}
/// Construct a SIB byte with scale * index + disp32
/// r/m effective address: [scale * index + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexDisp32(self: Self, scale: u2, index: u3) void {
assert(index != 4);
// scale is actually ignored
// index = 4 means no index
// base = 5 means no base, if mod == 0.
self.sib(scale, index, 5);
}
/// Construct a SIB byte with just base
/// r/m effective address: [base]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_base(self: Self, base: u3) void {
assert(base != 5);
// scale is actually ignored
// index = 4 means no index
self.sib(0, 4, base);
}
/// Construct a SIB byte with just disp32
/// r/m effective address: [disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_disp32(self: Self) void {
// scale is actually ignored
// index = 4 means no index
// base = 5 means no base, if mod == 0.
self.sib(0, 4, 5);
}
/// Construct a SIB byte with scale * index + base + disp8
/// r/m effective address: [base + scale * index + disp8]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBaseDisp8(self: Self, scale: u2, index: u3, base: u3) void {
self.sib(scale, index, base);
}
/// Construct a SIB byte with base + disp8, no index
/// r/m effective address: [base + disp8]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_baseDisp8(self: Self, base: u3) void {
// scale is ignored
// index = 4 means no index
self.sib(0, 4, base);
}
/// Construct a SIB byte with scale * index + base + disp32
/// r/m effective address: [base + scale * index + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBaseDisp32(self: Self, scale: u2, index: u3, base: u3) void {
self.sib(scale, index, base);
}
/// Construct a SIB byte with base + disp32, no index
/// r/m effective address: [base + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_baseDisp32(self: Self, base: u3) void {
// scale is ignored
// index = 4 means no index
self.sib(0, 4, base);
}
// -------------------------
// Trivial (no bit fiddling)
// -------------------------
/// Encode an 8 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm8(self: Self, imm: i8) void {
self.code.appendAssumeCapacity(@bitCast(u8, imm));
}
/// Encode an 8 bit displacement
///
/// It is sign-extended to 64 bits by the cpu.
pub fn disp8(self: Self, disp: i8) void {
self.code.appendAssumeCapacity(@bitCast(u8, disp));
}
/// Encode an 16 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm16(self: Self, imm: i16) void {
self.writeIntLittle(i16, imm);
}
/// Encode an 32 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm32(self: Self, imm: i32) void {
self.writeIntLittle(i32, imm);
}
/// Encode an 32 bit displacement
///
/// It is sign-extended to 64 bits by the cpu.
pub fn disp32(self: Self, disp: i32) void {
self.writeIntLittle(i32, disp);
}
/// Encode an 64 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm64(self: Self, imm: u64) void {
self.writeIntLittle(u64, imm);
}
};
test "x86_64 Encoder helpers" {
var code = ArrayList(u8).init(testing.allocator);
defer code.deinit();
// simple integer multiplication
// imul eax,edi
// 0faf c7
{
try code.resize(0);
const encoder = try Encoder.init(&code, 4);
encoder.rex(.{
.r = Register.eax.isExtended(),
.b = Register.edi.isExtended(),
});
encoder.opcode_2byte(0x0f, 0xaf);
encoder.modRm_direct(
Register.eax.low_id(),
Register.edi.low_id(),
);
try testing.expectEqualSlices(u8, &[_]u8{ 0x0f, 0xaf, 0xc7 }, code.items);
}
// simple mov
// mov eax,edi
// 89 f8
{
try code.resize(0);
const encoder = try Encoder.init(&code, 3);
encoder.rex(.{
.r = Register.edi.isExtended(),
.b = Register.eax.isExtended(),
});
encoder.opcode_1byte(0x89);
encoder.modRm_direct(
Register.edi.low_id(),
Register.eax.low_id(),
);
try testing.expectEqualSlices(u8, &[_]u8{ 0x89, 0xf8 }, code.items);
}
// signed integer addition of 32-bit sign extended immediate to 64 bit register
// add rcx, 2147483647
//
// Using the following opcode: REX.W + 81 /0 id, we expect the following encoding
//
// 48 : REX.W set for 64 bit operand (*r*cx)
// 81 : opcode for "<arithmetic> with immediate"
// c1 : id = rcx,
// : c1 = 11 <-- mod = 11 indicates r/m is register (rcx)
// : 000 <-- opcode_extension = 0 because opcode extension is /0. /0 specifies ADD
// : 001 <-- 001 is rcx
// ffffff7f : 2147483647
{
try code.resize(0);
const encoder = try Encoder.init(&code, 7);
encoder.rex(.{ .w = true }); // use 64 bit operation
encoder.opcode_1byte(0x81);
encoder.modRm_direct(
0,
Register.rcx.low_id(),
);
encoder.imm32(2147483647);
try testing.expectEqualSlices(u8, &[_]u8{ 0x48, 0x81, 0xc1, 0xff, 0xff, 0xff, 0x7f }, code.items);
}
}
// TODO add these registers to the enum and populate dwarfLocOp
// // Return Address register. This is stored in `0(%rsp, "")` and is not a physical register.
// RA = (16, "RA"),
//
// XMM0 = (17, "xmm0"),
// XMM1 = (18, "xmm1"),
// XMM2 = (19, "xmm2"),
// XMM3 = (20, "xmm3"),
// XMM4 = (21, "xmm4"),
// XMM5 = (22, "xmm5"),
// XMM6 = (23, "xmm6"),
// XMM7 = (24, "xmm7"),
//
// XMM8 = (25, "xmm8"),
// XMM9 = (26, "xmm9"),
// XMM10 = (27, "xmm10"),
// XMM11 = (28, "xmm11"),
// XMM12 = (29, "xmm12"),
// XMM13 = (30, "xmm13"),
// XMM14 = (31, "xmm14"),
// XMM15 = (32, "xmm15"),
//
// ST0 = (33, "st0"),
// ST1 = (34, "st1"),
// ST2 = (35, "st2"),
// ST3 = (36, "st3"),
// ST4 = (37, "st4"),
// ST5 = (38, "st5"),
// ST6 = (39, "st6"),
// ST7 = (40, "st7"),
//
// MM0 = (41, "mm0"),
// MM1 = (42, "mm1"),
// MM2 = (43, "mm2"),
// MM3 = (44, "mm3"),
// MM4 = (45, "mm4"),
// MM5 = (46, "mm5"),
// MM6 = (47, "mm6"),
// MM7 = (48, "mm7"),
//
// RFLAGS = (49, "rFLAGS"),
// ES = (50, "es"),
// CS = (51, "cs"),
// SS = (52, "ss"),
// DS = (53, "ds"),
// FS = (54, "fs"),
// GS = (55, "gs"),
//
// FS_BASE = (58, "fs.base"),
// GS_BASE = (59, "gs.base"),
//
// TR = (62, "tr"),
// LDTR = (63, "ldtr"),
// MXCSR = (64, "mxcsr"),
// FCW = (65, "fcw"),
// FSW = (66, "fsw"),
//
// XMM16 = (67, "xmm16"),
// XMM17 = (68, "xmm17"),
// XMM18 = (69, "xmm18"),
// XMM19 = (70, "xmm19"),
// XMM20 = (71, "xmm20"),
// XMM21 = (72, "xmm21"),
// XMM22 = (73, "xmm22"),
// XMM23 = (74, "xmm23"),
// XMM24 = (75, "xmm24"),
// XMM25 = (76, "xmm25"),
// XMM26 = (77, "xmm26"),
// XMM27 = (78, "xmm27"),
// XMM28 = (79, "xmm28"),
// XMM29 = (80, "xmm29"),
// XMM30 = (81, "xmm30"),
// XMM31 = (82, "xmm31"),
//
// K0 = (118, "k0"),
// K1 = (119, "k1"),
// K2 = (120, "k2"),
// K3 = (121, "k3"),
// K4 = (122, "k4"),
// K5 = (123, "k5"),
// K6 = (124, "k6"),
// K7 = (125, "k7"),
|