1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
|
const std = @import("std");
const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const assert = std.debug.assert;
const testing = std.testing;
const leb = std.leb;
const mem = std.mem;
const wasm = std.wasm;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const ir = @import("../ir.zig");
const Inst = ir.Inst;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const Compilation = @import("../Compilation.zig");
const AnyMCValue = @import("../codegen.zig").AnyMCValue;
const LazySrcLoc = Module.LazySrcLoc;
/// Wasm Value, created when generating an instruction
const WValue = union(enum) {
none: void,
/// Index of the local variable
local: u32,
/// Instruction holding a constant `Value`
constant: *Inst,
/// Offset position in the list of bytecode instructions
code_offset: usize,
/// The label of the block, used by breaks to find its relative distance
block_idx: u32,
};
/// Wasm ops, but without input/output/signedness information
/// Used for `buildOpcode`
const Op = enum {
@"unreachable",
nop,
block,
loop,
@"if",
@"else",
end,
br,
br_if,
br_table,
@"return",
call,
call_indirect,
drop,
select,
local_get,
local_set,
local_tee,
global_get,
global_set,
load,
store,
memory_size,
memory_grow,
@"const",
eqz,
eq,
ne,
lt,
gt,
le,
ge,
clz,
ctz,
popcnt,
add,
sub,
mul,
div,
rem,
@"and",
@"or",
xor,
shl,
shr,
rotl,
rotr,
abs,
neg,
ceil,
floor,
trunc,
nearest,
sqrt,
min,
max,
copysign,
wrap,
convert,
demote,
promote,
reinterpret,
extend,
};
/// Contains the settings needed to create an `Opcode` using `buildOpcode`.
///
/// The fields correspond to the opcode name. Here is an example
/// i32_trunc_f32_s
/// ^ ^ ^ ^
/// | | | |
/// valtype1 | | |
/// = .i32 | | |
/// | | |
/// op | |
/// = .trunc | |
/// | |
/// valtype2 |
/// = .f32 |
/// |
/// width |
/// = null |
/// |
/// signed
/// = true
///
/// There can be missing fields, here are some more examples:
/// i64_load8_u
/// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false }
/// i32_mul
/// --> .{ .valtype1 = .i32, .op = .trunc }
/// nop
/// --> .{ .op = .nop }
const OpcodeBuildArguments = struct {
/// First valtype in the opcode (usually represents the type of the output)
valtype1: ?wasm.Valtype = null,
/// The operation (e.g. call, unreachable, div, min, sqrt, etc.)
op: Op,
/// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s)
width: ?u8 = null,
/// Second valtype in the opcode name (usually represents the type of the input)
valtype2: ?wasm.Valtype = null,
/// Signedness of the op
signedness: ?std.builtin.Signedness = null,
};
/// Helper function that builds an Opcode given the arguments needed
fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode {
switch (args.op) {
.@"unreachable" => return .@"unreachable",
.nop => return .nop,
.block => return .block,
.loop => return .loop,
.@"if" => return .@"if",
.@"else" => return .@"else",
.end => return .end,
.br => return .br,
.br_if => return .br_if,
.br_table => return .br_table,
.@"return" => return .@"return",
.call => return .call,
.call_indirect => return .call_indirect,
.drop => return .drop,
.select => return .select,
.local_get => return .local_get,
.local_set => return .local_set,
.local_tee => return .local_tee,
.global_get => return .global_get,
.global_set => return .global_set,
.load => if (args.width) |width|
switch (width) {
8 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u,
.i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u,
.f32, .f64 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u,
.i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u,
.f32, .f64 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u,
.i32, .f32, .f64 => unreachable,
},
else => unreachable,
}
else switch (args.valtype1.?) {
.i32 => return .i32_load,
.i64 => return .i64_load,
.f32 => return .f32_load,
.f64 => return .f64_load,
},
.store => if (args.width) |width| {
switch (width) {
8 => switch (args.valtype1.?) {
.i32 => return .i32_store8,
.i64 => return .i64_store8,
.f32, .f64 => unreachable,
},
16 => switch (args.valtype1.?) {
.i32 => return .i32_store16,
.i64 => return .i64_store16,
.f32, .f64 => unreachable,
},
32 => switch (args.valtype1.?) {
.i64 => return .i64_store32,
.i32, .f32, .f64 => unreachable,
},
else => unreachable,
}
} else {
switch (args.valtype1.?) {
.i32 => return .i32_store,
.i64 => return .i64_store,
.f32 => return .f32_store,
.f64 => return .f64_store,
}
},
.memory_size => return .memory_size,
.memory_grow => return .memory_grow,
.@"const" => switch (args.valtype1.?) {
.i32 => return .i32_const,
.i64 => return .i64_const,
.f32 => return .f32_const,
.f64 => return .f64_const,
},
.eqz => switch (args.valtype1.?) {
.i32 => return .i32_eqz,
.i64 => return .i64_eqz,
.f32, .f64 => unreachable,
},
.eq => switch (args.valtype1.?) {
.i32 => return .i32_eq,
.i64 => return .i64_eq,
.f32 => return .f32_eq,
.f64 => return .f64_eq,
},
.ne => switch (args.valtype1.?) {
.i32 => return .i32_ne,
.i64 => return .i64_ne,
.f32 => return .f32_ne,
.f64 => return .f64_ne,
},
.lt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u,
.i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u,
.f32 => return .f32_lt,
.f64 => return .f64_lt,
},
.gt => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u,
.i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u,
.f32 => return .f32_gt,
.f64 => return .f64_gt,
},
.le => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u,
.i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u,
.f32 => return .f32_le,
.f64 => return .f64_le,
},
.ge => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u,
.i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u,
.f32 => return .f32_ge,
.f64 => return .f64_ge,
},
.clz => switch (args.valtype1.?) {
.i32 => return .i32_clz,
.i64 => return .i64_clz,
.f32, .f64 => unreachable,
},
.ctz => switch (args.valtype1.?) {
.i32 => return .i32_ctz,
.i64 => return .i64_ctz,
.f32, .f64 => unreachable,
},
.popcnt => switch (args.valtype1.?) {
.i32 => return .i32_popcnt,
.i64 => return .i64_popcnt,
.f32, .f64 => unreachable,
},
.add => switch (args.valtype1.?) {
.i32 => return .i32_add,
.i64 => return .i64_add,
.f32 => return .f32_add,
.f64 => return .f64_add,
},
.sub => switch (args.valtype1.?) {
.i32 => return .i32_sub,
.i64 => return .i64_sub,
.f32 => return .f32_sub,
.f64 => return .f64_sub,
},
.mul => switch (args.valtype1.?) {
.i32 => return .i32_mul,
.i64 => return .i64_mul,
.f32 => return .f32_mul,
.f64 => return .f64_mul,
},
.div => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u,
.i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u,
.f32 => return .f32_div,
.f64 => return .f64_div,
},
.rem => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u,
.i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u,
.f32, .f64 => unreachable,
},
.@"and" => switch (args.valtype1.?) {
.i32 => return .i32_and,
.i64 => return .i64_and,
.f32, .f64 => unreachable,
},
.@"or" => switch (args.valtype1.?) {
.i32 => return .i32_or,
.i64 => return .i64_or,
.f32, .f64 => unreachable,
},
.xor => switch (args.valtype1.?) {
.i32 => return .i32_xor,
.i64 => return .i64_xor,
.f32, .f64 => unreachable,
},
.shl => switch (args.valtype1.?) {
.i32 => return .i32_shl,
.i64 => return .i64_shl,
.f32, .f64 => unreachable,
},
.shr => switch (args.valtype1.?) {
.i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u,
.i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u,
.f32, .f64 => unreachable,
},
.rotl => switch (args.valtype1.?) {
.i32 => return .i32_rotl,
.i64 => return .i64_rotl,
.f32, .f64 => unreachable,
},
.rotr => switch (args.valtype1.?) {
.i32 => return .i32_rotr,
.i64 => return .i64_rotr,
.f32, .f64 => unreachable,
},
.abs => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_abs,
.f64 => return .f64_abs,
},
.neg => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_neg,
.f64 => return .f64_neg,
},
.ceil => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_ceil,
.f64 => return .f64_ceil,
},
.floor => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_floor,
.f64 => return .f64_floor,
},
.trunc => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => unreachable,
.f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u,
.f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u,
},
.i64 => unreachable,
.f32 => return .f32_trunc,
.f64 => return .f64_trunc,
},
.nearest => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_nearest,
.f64 => return .f64_nearest,
},
.sqrt => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_sqrt,
.f64 => return .f64_sqrt,
},
.min => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_min,
.f64 => return .f64_min,
},
.max => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_max,
.f64 => return .f64_max,
},
.copysign => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => return .f32_copysign,
.f64 => return .f64_copysign,
},
.wrap => switch (args.valtype1.?) {
.i32 => switch (args.valtype2.?) {
.i32 => unreachable,
.i64 => return .i32_wrap_i64,
.f32, .f64 => unreachable,
},
.i64, .f32, .f64 => unreachable,
},
.convert => switch (args.valtype1.?) {
.i32, .i64 => unreachable,
.f32 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u,
.f32, .f64 => unreachable,
},
.f64 => switch (args.valtype2.?) {
.i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u,
.i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u,
.f32, .f64 => unreachable,
},
},
.demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable,
.promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable,
.reinterpret => switch (args.valtype1.?) {
.i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable,
.i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable,
.f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable,
.f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable,
},
.extend => switch (args.valtype1.?) {
.i32 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable,
else => unreachable,
},
.i64 => switch (args.width.?) {
8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable,
16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable,
32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable,
else => unreachable,
},
.f32, .f64 => unreachable,
},
}
}
test "Wasm - buildOpcode" {
// Make sure buildOpcode is referenced, and test some examples
const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 });
const end = buildOpcode(.{ .op = .end });
const local_get = buildOpcode(.{ .op = .local_get });
const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed });
const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 });
testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const);
testing.expectEqual(@as(wasm.Opcode, .end), end);
testing.expectEqual(@as(wasm.Opcode, .local_get), local_get);
testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s);
testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64);
}
/// Hashmap to store generated `WValue` for each `Inst`
pub const ValueTable = std.AutoHashMapUnmanaged(*Inst, WValue);
/// Code represents the `Code` section of wasm that
/// belongs to a function
pub const Context = struct {
/// Reference to the function declaration the code
/// section belongs to
decl: *Decl,
gpa: *mem.Allocator,
/// Table to save `WValue`'s generated by an `Inst`
values: ValueTable,
/// `bytes` contains the wasm bytecode belonging to the 'code' section.
code: ArrayList(u8),
/// Contains the generated function type bytecode for the current function
/// found in `decl`
func_type_data: ArrayList(u8),
/// The index the next local generated will have
/// NOTE: arguments share the index with locals therefore the first variable
/// will have the index that comes after the last argument's index
local_index: u32 = 0,
/// If codegen fails, an error messages will be allocated and saved in `err_msg`
err_msg: *Module.ErrorMsg,
/// Current block depth. Used to calculate the relative difference between a break
/// and block
block_depth: u32 = 0,
/// List of all locals' types generated throughout this declaration
/// used to emit locals count at start of 'code' section.
locals: std.ArrayListUnmanaged(u8),
/// The Target we're emitting (used to call intInfo)
target: std.Target,
const InnerError = error{
OutOfMemory,
CodegenFail,
};
pub fn deinit(self: *Context) void {
self.values.deinit(self.gpa);
self.locals.deinit(self.gpa);
self.* = undefined;
}
/// Sets `err_msg` on `Context` and returns `error.CodegemFail` which is caught in link/Wasm.zig
fn fail(self: *Context, src: LazySrcLoc, comptime fmt: []const u8, args: anytype) InnerError {
const src_loc = src.toSrcLocWithDecl(self.decl);
self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, fmt, args);
return error.CodegenFail;
}
/// Resolves the `WValue` for the given instruction `inst`
/// When the given instruction has a `Value`, it returns a constant instead
fn resolveInst(self: Context, inst: *Inst) WValue {
if (!inst.ty.hasCodeGenBits()) return .none;
if (inst.value()) |_| {
return WValue{ .constant = inst };
}
return self.values.get(inst).?; // Instruction does not dominate all uses!
}
/// Using a given `Type`, returns the corresponding wasm Valtype
fn typeToValtype(self: *Context, src: LazySrcLoc, ty: Type) InnerError!wasm.Valtype {
return switch (ty.tag()) {
.f32 => .f32,
.f64 => .f64,
.u32, .i32, .bool => .i32,
.u64, .i64 => .i64,
else => self.fail(src, "TODO - Wasm valtype for type '{s}'", .{ty.tag()}),
};
}
/// Using a given `Type`, returns the byte representation of its wasm value type
fn genValtype(self: *Context, src: LazySrcLoc, ty: Type) InnerError!u8 {
return wasm.valtype(try self.typeToValtype(src, ty));
}
/// Using a given `Type`, returns the corresponding wasm value type
/// Differently from `genValtype` this also allows `void` to create a block
/// with no return type
fn genBlockType(self: *Context, src: LazySrcLoc, ty: Type) InnerError!u8 {
return switch (ty.tag()) {
.void, .noreturn => wasm.block_empty,
else => self.genValtype(src, ty),
};
}
/// Writes the bytecode depending on the given `WValue` in `val`
fn emitWValue(self: *Context, val: WValue) InnerError!void {
const writer = self.code.writer();
switch (val) {
.block_idx => unreachable,
.none, .code_offset => {},
.local => |idx| {
try writer.writeByte(wasm.opcode(.local_get));
try leb.writeULEB128(writer, idx);
},
.constant => |inst| try self.emitConstant(inst.castTag(.constant).?), // creates a new constant onto the stack
}
}
fn genFunctype(self: *Context) InnerError!void {
const ty = self.decl.typed_value.most_recent.typed_value.ty;
const writer = self.func_type_data.writer();
try writer.writeByte(wasm.function_type);
// param types
try leb.writeULEB128(writer, @intCast(u32, ty.fnParamLen()));
if (ty.fnParamLen() != 0) {
const params = try self.gpa.alloc(Type, ty.fnParamLen());
defer self.gpa.free(params);
ty.fnParamTypes(params);
for (params) |param_type| {
// Can we maybe get the source index of each param?
const val_type = try self.genValtype(.{ .node_offset = 0 }, param_type);
try writer.writeByte(val_type);
}
}
// return type
const return_type = ty.fnReturnType();
switch (return_type.tag()) {
.void, .noreturn => try leb.writeULEB128(writer, @as(u32, 0)),
else => |ret_type| {
try leb.writeULEB128(writer, @as(u32, 1));
// Can we maybe get the source index of the return type?
const val_type = try self.genValtype(.{ .node_offset = 0 }, return_type);
try writer.writeByte(val_type);
},
}
}
/// Generates the wasm bytecode for the function declaration belonging to `Context`
pub fn gen(self: *Context) InnerError!void {
assert(self.code.items.len == 0);
try self.genFunctype();
// Write instructions
// TODO: check for and handle death of instructions
const tv = self.decl.typed_value.most_recent.typed_value;
const mod_fn = blk: {
if (tv.val.castTag(.function)) |func| break :blk func.data;
if (tv.val.castTag(.extern_fn)) |ext_fn| return; // don't need codegen for extern functions
return self.fail(.{ .node_offset = 0 }, "TODO: Wasm codegen for decl type '{s}'", .{tv.ty.tag()});
};
// Reserve space to write the size after generating the code as well as space for locals count
try self.code.resize(10);
try self.genBody(mod_fn.body);
// finally, write our local types at the 'offset' position
{
leb.writeUnsignedFixed(5, self.code.items[5..10], @intCast(u32, self.locals.items.len));
// offset into 'code' section where we will put our locals types
var local_offset: usize = 10;
// emit the actual locals amount
for (self.locals.items) |local| {
var buf: [6]u8 = undefined;
leb.writeUnsignedFixed(5, buf[0..5], @as(u32, 1));
buf[5] = local;
try self.code.insertSlice(local_offset, &buf);
local_offset += 6;
}
}
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.end));
// Fill in the size of the generated code to the reserved space at the
// beginning of the buffer.
const size = self.code.items.len - 5 + self.decl.fn_link.wasm.?.idx_refs.items.len * 5;
leb.writeUnsignedFixed(5, self.code.items[0..5], @intCast(u32, size));
}
fn genInst(self: *Context, inst: *Inst) InnerError!WValue {
return switch (inst.tag) {
.add => self.genBinOp(inst.castTag(.add).?, .add),
.alloc => self.genAlloc(inst.castTag(.alloc).?),
.arg => self.genArg(inst.castTag(.arg).?),
.block => self.genBlock(inst.castTag(.block).?),
.breakpoint => self.genBreakpoint(inst.castTag(.breakpoint).?),
.br => self.genBr(inst.castTag(.br).?),
.call => self.genCall(inst.castTag(.call).?),
.bit_or => self.genBinOp(inst.castTag(.bit_or).?, .@"or"),
.bit_and => self.genBinOp(inst.castTag(.bit_and).?, .@"and"),
.bool_or => self.genBinOp(inst.castTag(.bool_or).?, .@"or"),
.bool_and => self.genBinOp(inst.castTag(.bool_and).?, .@"and"),
.cmp_eq => self.genCmp(inst.castTag(.cmp_eq).?, .eq),
.cmp_gte => self.genCmp(inst.castTag(.cmp_gte).?, .gte),
.cmp_gt => self.genCmp(inst.castTag(.cmp_gt).?, .gt),
.cmp_lte => self.genCmp(inst.castTag(.cmp_lte).?, .lte),
.cmp_lt => self.genCmp(inst.castTag(.cmp_lt).?, .lt),
.cmp_neq => self.genCmp(inst.castTag(.cmp_neq).?, .neq),
.condbr => self.genCondBr(inst.castTag(.condbr).?),
.constant => unreachable,
.dbg_stmt => WValue.none,
.load => self.genLoad(inst.castTag(.load).?),
.loop => self.genLoop(inst.castTag(.loop).?),
.mul => self.genBinOp(inst.castTag(.mul).?, .mul),
.div => self.genBinOp(inst.castTag(.div).?, .div),
.xor => self.genBinOp(inst.castTag(.xor).?, .xor),
.not => self.genNot(inst.castTag(.not).?),
.ret => self.genRet(inst.castTag(.ret).?),
.retvoid => WValue.none,
.store => self.genStore(inst.castTag(.store).?),
.sub => self.genBinOp(inst.castTag(.sub).?, .sub),
.unreach => self.genUnreachable(inst.castTag(.unreach).?),
else => self.fail(inst.src, "TODO: Implement wasm inst: {s}", .{inst.tag}),
};
}
fn genBody(self: *Context, body: ir.Body) InnerError!void {
for (body.instructions) |inst| {
const result = try self.genInst(inst);
try self.values.putNoClobber(self.gpa, inst, result);
}
}
fn genRet(self: *Context, inst: *Inst.UnOp) InnerError!WValue {
// TODO: Implement tail calls
const operand = self.resolveInst(inst.operand);
try self.emitWValue(operand);
return .none;
}
fn genCall(self: *Context, inst: *Inst.Call) InnerError!WValue {
const func_inst = inst.func.castTag(.constant).?;
const func_val = inst.func.value().?;
const target = blk: {
if (func_val.castTag(.function)) |func| {
break :blk func.data.owner_decl;
} else if (func_val.castTag(.extern_fn)) |ext_fn| {
break :blk ext_fn.data;
}
return self.fail(inst.base.src, "Expected a function, but instead found type '{s}'", .{func_val.tag()});
};
for (inst.args) |arg| {
const arg_val = self.resolveInst(arg);
try self.emitWValue(arg_val);
}
try self.code.append(wasm.opcode(.call));
// The function index immediate argument will be filled in using this data
// in link.Wasm.flush().
try self.decl.fn_link.wasm.?.idx_refs.append(self.gpa, .{
.offset = @intCast(u32, self.code.items.len),
.decl = target,
});
return .none;
}
fn genAlloc(self: *Context, inst: *Inst.NoOp) InnerError!WValue {
const elem_type = inst.base.ty.elemType();
const valtype = try self.genValtype(inst.base.src, elem_type);
try self.locals.append(self.gpa, valtype);
defer self.local_index += 1;
return WValue{ .local = self.local_index };
}
fn genStore(self: *Context, inst: *Inst.BinOp) InnerError!WValue {
const writer = self.code.writer();
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(rhs);
try writer.writeByte(wasm.opcode(.local_set));
try leb.writeULEB128(writer, lhs.local);
return .none;
}
fn genLoad(self: *Context, inst: *Inst.UnOp) InnerError!WValue {
return self.resolveInst(inst.operand);
}
fn genArg(self: *Context, inst: *Inst.Arg) InnerError!WValue {
// arguments share the index with locals
defer self.local_index += 1;
return WValue{ .local = self.local_index };
}
fn genBinOp(self: *Context, inst: *Inst.BinOp, op: Op) InnerError!WValue {
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(lhs);
try self.emitWValue(rhs);
const opcode: wasm.Opcode = buildOpcode(.{
.op = op,
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
.signedness = if (inst.base.ty.isSignedInt()) .signed else .unsigned,
});
try self.code.append(wasm.opcode(opcode));
return .none;
}
fn emitConstant(self: *Context, inst: *Inst.Constant) InnerError!void {
const writer = self.code.writer();
switch (inst.base.ty.zigTypeTag()) {
.Int => {
// write opcode
const opcode: wasm.Opcode = buildOpcode(.{
.op = .@"const",
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
});
try writer.writeByte(wasm.opcode(opcode));
// write constant
switch (inst.base.ty.intInfo(self.target).signedness) {
.signed => try leb.writeILEB128(writer, inst.val.toSignedInt()),
.unsigned => try leb.writeILEB128(writer, inst.val.toUnsignedInt()),
}
},
.Bool => {
// write opcode
try writer.writeByte(wasm.opcode(.i32_const));
// write constant
try leb.writeILEB128(writer, inst.val.toSignedInt());
},
.Float => {
// write opcode
const opcode: wasm.Opcode = buildOpcode(.{
.op = .@"const",
.valtype1 = try self.typeToValtype(inst.base.src, inst.base.ty),
});
try writer.writeByte(wasm.opcode(opcode));
// write constant
switch (inst.base.ty.floatBits(self.target)) {
0...32 => try writer.writeIntLittle(u32, @bitCast(u32, inst.val.toFloat(f32))),
64 => try writer.writeIntLittle(u64, @bitCast(u64, inst.val.toFloat(f64))),
else => |bits| return self.fail(inst.base.src, "Wasm TODO: emitConstant for float with {d} bits", .{bits}),
}
},
.Void => {},
else => |ty| return self.fail(inst.base.src, "Wasm TODO: emitConstant for zigTypeTag {s}", .{ty}),
}
}
fn genBlock(self: *Context, block: *Inst.Block) InnerError!WValue {
const block_ty = try self.genBlockType(block.base.src, block.base.ty);
try self.startBlock(.block, block_ty, null);
block.codegen = .{
// we don't use relocs, so using `relocs` is illegal behaviour.
.relocs = undefined,
// Here we set the current block idx, so breaks know the depth to jump
// to when breaking out.
.mcv = @bitCast(AnyMCValue, WValue{ .block_idx = self.block_depth }),
};
try self.genBody(block.body);
try self.endBlock();
return .none;
}
/// appends a new wasm block to the code section and increases the `block_depth` by 1
fn startBlock(self: *Context, block_type: wasm.Opcode, valtype: u8, with_offset: ?usize) !void {
self.block_depth += 1;
if (with_offset) |offset| {
try self.code.insert(offset, wasm.opcode(block_type));
try self.code.insert(offset + 1, valtype);
} else {
try self.code.append(wasm.opcode(block_type));
try self.code.append(valtype);
}
}
/// Ends the current wasm block and decreases the `block_depth` by 1
fn endBlock(self: *Context) !void {
try self.code.append(wasm.opcode(.end));
self.block_depth -= 1;
}
fn genLoop(self: *Context, loop: *Inst.Loop) InnerError!WValue {
const loop_ty = try self.genBlockType(loop.base.src, loop.base.ty);
try self.startBlock(.loop, loop_ty, null);
try self.genBody(loop.body);
// breaking to the index of a loop block will continue the loop instead
try self.code.append(wasm.opcode(.br));
try leb.writeULEB128(self.code.writer(), @as(u32, 0));
try self.endBlock();
return .none;
}
fn genCondBr(self: *Context, condbr: *Inst.CondBr) InnerError!WValue {
const condition = self.resolveInst(condbr.condition);
const writer = self.code.writer();
// TODO: Handle death instructions for then and else body
// insert blocks at the position of `offset` so
// the condition can jump to it
const offset = switch (condition) {
.code_offset => |offset| offset,
else => blk: {
const offset = self.code.items.len;
try self.emitWValue(condition);
break :blk offset;
},
};
const block_ty = try self.genBlockType(condbr.base.src, condbr.base.ty);
try self.startBlock(.block, block_ty, offset);
// we inserted the block in front of the condition
// so now check if condition matches. If not, break outside this block
// and continue with the then codepath
try writer.writeByte(wasm.opcode(.br_if));
try leb.writeULEB128(writer, @as(u32, 0));
try self.genBody(condbr.else_body);
try self.endBlock();
// Outer block that matches the condition
try self.genBody(condbr.then_body);
return .none;
}
fn genCmp(self: *Context, inst: *Inst.BinOp, op: std.math.CompareOperator) InnerError!WValue {
const ty = inst.lhs.ty.tag();
// save offset, so potential conditions can insert blocks in front of
// the comparison that we can later jump back to
const offset = self.code.items.len;
const lhs = self.resolveInst(inst.lhs);
const rhs = self.resolveInst(inst.rhs);
try self.emitWValue(lhs);
try self.emitWValue(rhs);
const opcode: wasm.Opcode = buildOpcode(.{
.valtype1 = try self.typeToValtype(inst.base.src, inst.lhs.ty),
.op = switch (op) {
.lt => .lt,
.lte => .le,
.eq => .eq,
.neq => .ne,
.gte => .ge,
.gt => .gt,
},
.signedness = inst.lhs.ty.intInfo(self.target).signedness,
});
try self.code.append(wasm.opcode(opcode));
return WValue{ .code_offset = offset };
}
fn genBr(self: *Context, br: *Inst.Br) InnerError!WValue {
// if operand has codegen bits we should break with a value
if (br.operand.ty.hasCodeGenBits()) {
const operand = self.resolveInst(br.operand);
try self.emitWValue(operand);
}
// every block contains a `WValue` with its block index.
// We then determine how far we have to jump to it by substracting it from current block depth
const wvalue = @bitCast(WValue, br.block.codegen.mcv);
const idx: u32 = self.block_depth - wvalue.block_idx;
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.br));
try leb.writeULEB128(writer, idx);
return .none;
}
fn genNot(self: *Context, not: *Inst.UnOp) InnerError!WValue {
const offset = self.code.items.len;
const operand = self.resolveInst(not.operand);
try self.emitWValue(operand);
// wasm does not have booleans nor the `not` instruction, therefore compare with 0
// to create the same logic
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.i32_const));
try leb.writeILEB128(writer, @as(i32, 0));
try writer.writeByte(wasm.opcode(.i32_eq));
return WValue{ .code_offset = offset };
}
fn genBreakpoint(self: *Context, breakpoint: *Inst.NoOp) InnerError!WValue {
// unsupported by wasm itself. Can be implemented once we support DWARF
// for wasm
return .none;
}
fn genUnreachable(self: *Context, unreach: *Inst.NoOp) InnerError!WValue {
try self.code.append(wasm.opcode(.@"unreachable"));
return .none;
}
};
|