aboutsummaryrefslogtreecommitdiff
path: root/src/codegen/spirv.zig
blob: 0d9d1ae223137e566e282b4a1f92ea51db95a84d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;

const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");

const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;

const SpvModule = @import("spirv/Module.zig");
const SpvSection = @import("spirv/Section.zig");
const SpvType = @import("spirv/type.zig").Type;

const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);

const IncomingBlock = struct {
    src_label_id: IdRef,
    break_value_id: IdRef,
};

pub const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
    label_id: IdRef,
    incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
});

/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
    /// The Zig module that we are generating decls for.
    module: *Module,

    /// The SPIR-V module code should be put in.
    spv: *SpvModule,

    /// The decl we are currently generating code for.
    decl: *Decl,

    /// The intermediate code of the declaration we are currently generating. Note: If
    /// the declaration is not a function, this value will be undefined!
    air: Air,

    /// The liveness analysis of the intermediate code for the declaration we are currently generating.
    /// Note: If the declaration is not a function, this value will be undefined!
    liveness: Liveness,

    /// An array of function argument result-ids. Each index corresponds with the
    /// function argument of the same index.
    args: std.ArrayListUnmanaged(IdRef) = .{},

    /// A counter to keep track of how many `arg` instructions we've seen yet.
    next_arg_index: u32,

    /// A map keeping track of which instruction generated which result-id.
    inst_results: InstMap = .{},

    /// We need to keep track of result ids for block labels, as well as the 'incoming'
    /// blocks for a block.
    blocks: BlockMap = .{},

    /// The label of the SPIR-V block we are currently generating.
    current_block_label_id: IdRef,

    /// The actual instructions for this function. We need to declare all locals in
    /// the first block, and because we don't know which locals there are going to be,
    /// we're just going to generate everything after the locals-section in this array.
    /// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the
    /// initial OpLabel. These will be generated into spv.sections.functions directly.
    code: SpvSection = .{},

    /// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
    /// Memory is owned by `module.gpa`.
    error_msg: ?*Module.ErrorMsg,

    /// Possible errors the `gen` function may return.
    const Error = error{ CodegenFail, OutOfMemory };

    /// This structure is used to return information about a type typically used for
    /// arithmetic operations. These types may either be integers, floats, or a vector
    /// of these. Most scalar operations also work on vectors, so we can easily represent
    /// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
    /// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
    const ArithmeticTypeInfo = struct {
        /// A classification of the inner type.
        const Class = enum {
            /// A boolean.
            bool,

            /// A regular, **native**, integer.
            /// This is only returned when the backend supports this int as a native type (when
            /// the relevant capability is enabled).
            integer,

            /// A regular float. These are all required to be natively supported. Floating points
            /// for which the relevant capability is not enabled are not emulated.
            float,

            /// An integer of a 'strange' size (which' bit size is not the same as its backing
            /// type. **Note**: this may **also** include power-of-2 integers for which the
            /// relevant capability is not enabled), but still within the limits of the largest
            /// natively supported integer type.
            strange_integer,

            /// An integer with more bits than the largest natively supported integer type.
            composite_integer,
        };

        /// The number of bits in the inner type.
        /// This is the actual number of bits of the type, not the size of the backing integer.
        bits: u16,

        /// Whether the type is a vector.
        is_vector: bool,

        /// Whether the inner type is signed. Only relevant for integers.
        signedness: std.builtin.Signedness,

        /// A classification of the inner type. These scenarios
        /// will all have to be handled slightly different.
        class: Class,
    };

    /// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
    /// only set when `gen` is called.
    pub fn init(module: *Module, spv: *SpvModule) DeclGen {
        return .{
            .module = module,
            .spv = spv,
            .decl = undefined,
            .air = undefined,
            .liveness = undefined,
            .next_arg_index = undefined,
            .current_block_label_id = undefined,
            .error_msg = undefined,
        };
    }

    /// Generate the code for `decl`. If a reportable error occurred during code generation,
    /// a message is returned by this function. Callee owns the memory. If this function
    /// returns such a reportable error, it is valid to be called again for a different decl.
    pub fn gen(self: *DeclGen, decl: *Decl, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
        // Reset internal resources, we don't want to re-allocate these.
        self.decl = decl;
        self.air = air;
        self.liveness = liveness;
        self.args.items.len = 0;
        self.next_arg_index = 0;
        self.inst_results.clearRetainingCapacity();
        self.blocks.clearRetainingCapacity();
        self.current_block_label_id = undefined;
        self.code.reset();
        self.error_msg = null;

        self.genDecl() catch |err| switch (err) {
            error.CodegenFail => return self.error_msg,
            else => |others| return others,
        };

        return null;
    }

    /// Free resources owned by the DeclGen.
    pub fn deinit(self: *DeclGen) void {
        self.args.deinit(self.spv.gpa);
        self.inst_results.deinit(self.spv.gpa);
        self.blocks.deinit(self.spv.gpa);
        self.code.deinit(self.spv.gpa);
    }

    /// Return the target which we are currently compiling for.
    fn getTarget(self: *DeclGen) std.Target {
        return self.module.getTarget();
    }

    fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
        @setCold(true);
        const src: LazySrcLoc = .{ .node_offset = 0 };
        const src_loc = src.toSrcLoc(self.decl);
        assert(self.error_msg == null);
        self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
        return error.CodegenFail;
    }

    fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
        @setCold(true);
        const src: LazySrcLoc = .{ .node_offset = 0 };
        const src_loc = src.toSrcLoc(self.decl);
        assert(self.error_msg == null);
        self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "TODO (SPIR-V): " ++ format, args);
        return error.CodegenFail;
    }

    /// Fetch the result-id for a previously generated instruction or constant.
    fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
        if (self.air.value(inst)) |val| {
            return self.genConstant(self.air.typeOf(inst), val);
        }
        const index = Air.refToIndex(inst).?;
        return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
    }

    /// Start a new SPIR-V block, Emits the label of the new block, and stores which
    /// block we are currently generating.
    /// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
    /// keep track of the previous block.
    fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void {
        try self.code.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id });
        self.current_block_label_id = label_id.toRef();
    }

    /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
    /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
    /// included), the width of the underlying type which represents it, given the enabled features for the current target.
    /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
    /// that size. In this case, multiple elements of the largest type should be used.
    /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
    /// The result is valid to be used with OpTypeInt.
    /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
    /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
    /// TODO: Should the result of this function be cached?
    fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
        const target = self.getTarget();

        // The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
        assert(bits != 0);

        // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
        // 32-bit integers are always supported (see spec, 2.16.1, Data rules).
        const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
            .{ .bits = 8, .feature = .Int8 },
            .{ .bits = 16, .feature = .Int16 },
            .{ .bits = 32, .feature = null },
            .{ .bits = 64, .feature = .Int64 },
        };

        for (ints) |int| {
            const has_feature = if (int.feature) |feature|
                Target.spirv.featureSetHas(target.cpu.features, feature)
            else
                true;

            if (bits <= int.bits and has_feature) {
                return int.bits;
            }
        }

        return null;
    }

    /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
    /// the Int64 capability is enabled).
    /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
    /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
    /// is no way of knowing whether those are actually supported.
    /// TODO: Maybe this should be cached?
    fn largestSupportedIntBits(self: *DeclGen) u16 {
        const target = self.getTarget();
        return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
            64
        else
            32;
    }

    /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
    /// arrays of largestSupportedIntBits().
    /// Asserts `ty` is an integer.
    fn isCompositeInt(self: *DeclGen, ty: Type) bool {
        return self.backingIntBits(ty) == null;
    }

    fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
        const target = self.getTarget();
        return switch (ty.zigTypeTag()) {
            .Bool => ArithmeticTypeInfo{
                .bits = 1, // Doesn't matter for this class.
                .is_vector = false,
                .signedness = .unsigned, // Technically, but doesn't matter for this class.
                .class = .bool,
            },
            .Float => ArithmeticTypeInfo{
                .bits = ty.floatBits(target),
                .is_vector = false,
                .signedness = .signed, // Technically, but doesn't matter for this class.
                .class = .float,
            },
            .Int => blk: {
                const int_info = ty.intInfo(target);
                // TODO: Maybe it's useful to also return this value.
                const maybe_backing_bits = self.backingIntBits(int_info.bits);
                break :blk ArithmeticTypeInfo{
                    .bits = int_info.bits,
                    .is_vector = false,
                    .signedness = int_info.signedness,
                    .class = if (maybe_backing_bits) |backing_bits|
                        if (backing_bits == int_info.bits)
                            ArithmeticTypeInfo.Class.integer
                        else
                            ArithmeticTypeInfo.Class.strange_integer
                    else
                        .composite_integer,
                };
            },
            // As of yet, there is no vector support in the self-hosted compiler.
            .Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}),
            // TODO: For which types is this the case?
            else => self.todo("implement arithmeticTypeInfo for {}", .{ty}),
        };
    }

    /// Generate a constant representing `val`.
    /// TODO: Deduplication?
    fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!IdRef {
        const target = self.getTarget();
        const section = &self.spv.sections.types_globals_constants;
        const result_id = self.spv.allocId();
        const result_type_id = try self.resolveTypeId(ty);

        if (val.isUndef()) {
            try section.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = result_type_id, .id_result = result_id });
            return result_id.toRef();
        }

        switch (ty.zigTypeTag()) {
            .Int => {
                const int_info = ty.intInfo(target);
                const backing_bits = self.backingIntBits(int_info.bits) orelse {
                    // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
                    return self.todo("implement composite int constants for {}", .{ty});
                };

                // We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
                // SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
                // might need to be updated.
                assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));

                // Note, value is required to be sign-extended, so we don't need to mask off the upper bits.
                // See https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Literal
                var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();

                const value: spec.LiteralContextDependentNumber = switch (backing_bits) {
                    1...32 => .{ .uint32 = @truncate(u32, int_bits) },
                    33...64 => .{ .uint64 = int_bits },
                    else => unreachable,
                };

                try section.emit(self.spv.gpa, .OpConstant, .{
                    .id_result_type = result_type_id,
                    .id_result = result_id,
                    .value = value,
                });
            },
            .Bool => {
                const operands = .{ .id_result_type = result_type_id, .id_result = result_id };
                if (val.toBool()) {
                    try section.emit(self.spv.gpa, .OpConstantTrue, operands);
                } else {
                    try section.emit(self.spv.gpa, .OpConstantFalse, operands);
                }
            },
            .Float => {
                // At this point we are guaranteed that the target floating point type is supported, otherwise the function
                // would have exited at resolveTypeId(ty).

                const value: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
                    // Prevent upcasting to f32 by bitcasting and writing as a uint32.
                    16 => .{ .uint32 = @bitCast(u16, val.toFloat(f16)) },
                    32 => .{ .float32 = val.toFloat(f32) },
                    64 => .{ .float64 = val.toFloat(f64) },
                    128 => unreachable, // Filtered out in the call to resolveTypeId.
                    // TODO: Insert case for long double when the layout for that is determined?
                    else => unreachable,
                };

                try section.emit(self.spv.gpa, .OpConstant, .{
                    .id_result_type = result_type_id,
                    .id_result = result_id,
                    .value = value,
                });
            },
            .Void => unreachable,
            else => return self.todo("constant generation of type {}", .{ty}),
        }

        return result_id.toRef();
    }

    /// Turn a Zig type into a SPIR-V Type, and return its type result-id.
    fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
        return self.spv.typeResultId(try self.resolveType(ty));
    }

    /// Turn a Zig type into a SPIR-V Type, and return a reference to it.
    fn resolveType(self: *DeclGen, ty: Type) Error!SpvType.Ref {
        const target = self.getTarget();
        return switch (ty.zigTypeTag()) {
            .Void => try self.spv.resolveType(SpvType.initTag(.void)),
            .Bool => blk: {
                // TODO: SPIR-V booleans are opaque. For local variables this is fine, but for structs
                // members we want to use integer types instead.
                break :blk try self.spv.resolveType(SpvType.initTag(.bool));
            },
            .Int => blk: {
                const int_info = ty.intInfo(target);
                const backing_bits = self.backingIntBits(int_info.bits) orelse {
                    // TODO: Integers too big for any native type are represented as "composite integers":
                    // An array of largestSupportedIntBits.
                    return self.todo("Implement composite int type {}", .{ty});
                };

                const payload = try self.spv.arena.create(SpvType.Payload.Int);
                payload.* = .{
                    .width = backing_bits,
                    .signedness = int_info.signedness,
                };
                break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
            },
            .Float => blk: {
                // We can (and want) not really emulate floating points with other floating point types like with the integer types,
                // so if the float is not supported, just return an error.
                const bits = ty.floatBits(target);
                const supported = switch (bits) {
                    16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
                    // 32-bit floats are always supported (see spec, 2.16.1, Data rules).
                    32 => true,
                    64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
                    else => false,
                };

                if (!supported) {
                    return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
                }

                const payload = try self.spv.arena.create(SpvType.Payload.Float);
                payload.* = .{
                    .width = bits,
                };
                break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
            },
            .Fn => blk: {
                // We only support zig-calling-convention functions, no varargs.
                if (ty.fnCallingConvention() != .Unspecified)
                    return self.fail("Unsupported calling convention for SPIR-V", .{});
                if (ty.fnIsVarArgs())
                    return self.fail("VarArgs functions are unsupported for SPIR-V", .{});

                const param_types = try self.spv.arena.alloc(SpvType.Ref, ty.fnParamLen());
                for (param_types) |*param, i| {
                    param.* = try self.resolveType(ty.fnParamType(i));
                }

                const return_type = try self.resolveType(ty.fnReturnType());

                const payload = try self.spv.arena.create(SpvType.Payload.Function);
                payload.* = .{ .return_type = return_type, .parameters = param_types };
                break :blk try self.spv.resolveType(SpvType.initPayload(&payload.base));
            },
            .Pointer => {
                // This type can now be properly implemented, but we still need to implement the storage classes as proper address spaces.
                return self.todo("Implement type Pointer properly", .{});
            },
            .Vector => {
                // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
                // which work on them), so simply use those.
                // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
                // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
                // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
                // is adequate at all for this.

                // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
                return self.todo("Implement type Vector", .{});
            },

            .Null,
            .Undefined,
            .EnumLiteral,
            .ComptimeFloat,
            .ComptimeInt,
            .Type,
            => unreachable, // Must be comptime.

            .BoundFn => unreachable, // this type will be deleted from the language.

            else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
        };
    }

    /// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
    /// TODO: The result of this needs to be cached.
    fn genPointerType(self: *DeclGen, ty: Type, storage_class: spec.StorageClass) !IdResultType {
        assert(ty.zigTypeTag() == .Pointer);

        const result_id = self.spv.allocId();

        // TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
        // if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
        // These also relates to the pointer's address space.
        const child_id = try self.resolveTypeId(ty.elemType());

        try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
            .id_result = result_id,
            .storage_class = storage_class,
            .type = child_id.toRef(),
        });

        return result_id.toResultType();
    }

    fn genDecl(self: *DeclGen) !void {
        const decl = self.decl;
        const result_id = decl.fn_link.spirv.id;

        if (decl.val.castTag(.function)) |_| {
            assert(decl.ty.zigTypeTag() == .Fn);
            const prototype_id = try self.resolveTypeId(decl.ty);
            try self.spv.sections.functions.emit(self.spv.gpa, .OpFunction, .{
                .id_result_type = try self.resolveTypeId(decl.ty.fnReturnType()),
                .id_result = result_id,
                .function_control = .{}, // TODO: We can set inline here if the type requires it.
                .function_type = prototype_id.toRef(),
            });

            const params = decl.ty.fnParamLen();
            var i: usize = 0;

            try self.args.ensureUnusedCapacity(self.spv.gpa, params);
            while (i < params) : (i += 1) {
                const param_type_id = try self.resolveTypeId(decl.ty.fnParamType(i));
                const arg_result_id = self.spv.allocId();
                try self.spv.sections.functions.emit(self.spv.gpa, .OpFunctionParameter, .{
                    .id_result_type = param_type_id,
                    .id_result = arg_result_id,
                });
                self.args.appendAssumeCapacity(arg_result_id.toRef());
            }

            // TODO: This could probably be done in a better way...
            const root_block_id = self.spv.allocId();

            // We need to generate the label directly in the functions section here because we're going to write the local variables after
            // here. Since we're not generating in self.code, we're just going to bypass self.beginSpvBlock here.
            try self.spv.sections.functions.emit(self.spv.gpa, .OpLabel, .{
                .id_result = root_block_id,
            });
            self.current_block_label_id = root_block_id.toRef();

            const main_body = self.air.getMainBody();
            try self.genBody(main_body);

            // Append the actual code into the functions section.
            try self.spv.sections.functions.append(self.spv.gpa, self.code);
            try self.spv.sections.functions.emit(self.spv.gpa, .OpFunctionEnd, {});
        } else {
            // TODO
            // return self.todo("generate decl type {}", .{decl.ty.zigTypeTag()});
        }
    }

    fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
        for (body) |inst| {
            try self.genInst(inst);
        }
    }

    fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
        const air_tags = self.air.instructions.items(.tag);
        const result_id = switch (air_tags[inst]) {
            // zig fmt: off
            .add, .addwrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd),
            .sub, .subwrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub),
            .mul, .mulwrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul),

            .bit_and  => try self.airBinOpSimple(inst, .OpBitwiseAnd),
            .bit_or   => try self.airBinOpSimple(inst, .OpBitwiseOr),
            .xor      => try self.airBinOpSimple(inst, .OpBitwiseXor),
            .bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
            .bool_or  => try self.airBinOpSimple(inst, .OpLogicalOr),

            .not => try self.airNot(inst),

            .cmp_eq  => try self.airCmp(inst, .OpFOrdEqual,            .OpLogicalEqual,      .OpIEqual),
            .cmp_neq => try self.airCmp(inst, .OpFOrdNotEqual,         .OpLogicalNotEqual,   .OpINotEqual),
            .cmp_gt  => try self.airCmp(inst, .OpFOrdGreaterThan,      .OpSGreaterThan,      .OpUGreaterThan),
            .cmp_gte => try self.airCmp(inst, .OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual),
            .cmp_lt  => try self.airCmp(inst, .OpFOrdLessThan,         .OpSLessThan,         .OpULessThan),
            .cmp_lte => try self.airCmp(inst, .OpFOrdLessThanEqual,    .OpSLessThanEqual,    .OpULessThanEqual),

            .arg   => self.airArg(),
            .alloc => try self.airAlloc(inst),
            .block => (try self.airBlock(inst)) orelse return,
            .load  => try self.airLoad(inst),

            .br         => return self.airBr(inst),
            .breakpoint => return,
            .cond_br    => return self.airCondBr(inst),
            .constant   => unreachable,
            .dbg_stmt   => return self.airDbgStmt(inst),
            .loop       => return self.airLoop(inst),
            .ret        => return self.airRet(inst),
            .store      => return self.airStore(inst),
            .unreach    => return self.airUnreach(),
            // zig fmt: on

            else => |tag| return self.todo("implement AIR tag {s}", .{
                @tagName(tag),
            }),
        };

        try self.inst_results.putNoClobber(self.spv.gpa, inst, result_id);
    }

    fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !IdRef {
        const bin_op = self.air.instructions.items(.data)[inst].bin_op;
        const lhs_id = try self.resolve(bin_op.lhs);
        const rhs_id = try self.resolve(bin_op.rhs);
        const result_id = self.spv.allocId();
        const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst));
        try self.code.emit(self.spv.gpa, opcode, .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .operand_1 = lhs_id,
            .operand_2 = rhs_id,
        });
        return result_id.toRef();
    }

    fn airArithOp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !IdRef {
        // LHS and RHS are guaranteed to have the same type, and AIR guarantees
        // the result to be the same as the LHS and RHS, which matches SPIR-V.
        const ty = self.air.typeOfIndex(inst);
        const bin_op = self.air.instructions.items(.data)[inst].bin_op;
        const lhs_id = try self.resolve(bin_op.lhs);
        const rhs_id = try self.resolve(bin_op.rhs);

        const result_id = self.spv.allocId();
        const result_type_id = try self.resolveTypeId(ty);

        assert(self.air.typeOf(bin_op.lhs).eql(ty));
        assert(self.air.typeOf(bin_op.rhs).eql(ty));

        // Binary operations are generally applicable to both scalar and vector operations
        // in SPIR-V, but int and float versions of operations require different opcodes.
        const info = try self.arithmeticTypeInfo(ty);

        const opcode_index: usize = switch (info.class) {
            .composite_integer => {
                return self.todo("binary operations for composite integers", .{});
            },
            .strange_integer => {
                return self.todo("binary operations for strange integers", .{});
            },
            .integer => switch (info.signedness) {
                .signed => @as(usize, 1),
                .unsigned => @as(usize, 2),
            },
            .float => 0,
            else => unreachable,
        };

        const operands = .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .operand_1 = lhs_id,
            .operand_2 = rhs_id,
        };

        switch (opcode_index) {
            0 => try self.code.emit(self.spv.gpa, fop, operands),
            1 => try self.code.emit(self.spv.gpa, sop, operands),
            2 => try self.code.emit(self.spv.gpa, uop, operands),
            else => unreachable,
        }
        // TODO: Trap on overflow? Probably going to be annoying.
        // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.

        return result_id.toRef();
    }

    fn airCmp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !IdRef {
        const bin_op = self.air.instructions.items(.data)[inst].bin_op;
        const lhs_id = try self.resolve(bin_op.lhs);
        const rhs_id = try self.resolve(bin_op.rhs);
        const result_id = self.spv.allocId();
        const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
        const op_ty = self.air.typeOf(bin_op.lhs);
        assert(op_ty.eql(self.air.typeOf(bin_op.rhs)));

        // Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
        // but int and float versions of operations require different opcodes.
        const info = try self.arithmeticTypeInfo(op_ty);

        const opcode_index: usize = switch (info.class) {
            .composite_integer => {
                return self.todo("binary operations for composite integers", .{});
            },
            .strange_integer => {
                return self.todo("comparison for strange integers", .{});
            },
            .float => 0,
            .bool => 1,
            .integer => switch (info.signedness) {
                .signed => @as(usize, 1),
                .unsigned => @as(usize, 2),
            },
        };

        const operands = .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .operand_1 = lhs_id,
            .operand_2 = rhs_id,
        };

        switch (opcode_index) {
            0 => try self.code.emit(self.spv.gpa, fop, operands),
            1 => try self.code.emit(self.spv.gpa, sop, operands),
            2 => try self.code.emit(self.spv.gpa, uop, operands),
            else => unreachable,
        }

        return result_id.toRef();
    }

    fn airNot(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
        const ty_op = self.air.instructions.items(.data)[inst].ty_op;
        const operand_id = try self.resolve(ty_op.operand);
        const result_id = self.spv.allocId();
        const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
        try self.code.emit(self.spv.gpa, .OpLogicalNot, .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .operand = operand_id,
        });
        return result_id.toRef();
    }

    fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
        const ty = self.air.typeOfIndex(inst);
        const storage_class = spec.StorageClass.Function;
        const result_type_id = try self.genPointerType(ty, storage_class);
        const result_id = self.spv.allocId();

        // Rather than generating into code here, we're just going to generate directly into the functions section so that
        // variable declarations appear in the first block of the function.
        try self.spv.sections.functions.emit(self.spv.gpa, .OpVariable, .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .storage_class = storage_class,
        });
        return result_id.toRef();
    }

    fn airArg(self: *DeclGen) IdRef {
        defer self.next_arg_index += 1;
        return self.args.items[self.next_arg_index];
    }

    fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
        // In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
        // "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
        // the current block by first generating the code of the block, then a label, and then generate the rest of the current
        // ir.Block in a different SPIR-V block.

        const label_id = self.spv.allocId();

        // 4 chosen as arbitrary initial capacity.
        var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4);

        try self.blocks.putNoClobber(self.spv.gpa, inst, .{
            .label_id = label_id.toRef(),
            .incoming_blocks = &incoming_blocks,
        });
        defer {
            assert(self.blocks.remove(inst));
            incoming_blocks.deinit(self.spv.gpa);
        }

        const ty = self.air.typeOfIndex(inst);
        const inst_datas = self.air.instructions.items(.data);
        const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
        const body = self.air.extra[extra.end..][0..extra.data.body_len];

        try self.genBody(body);
        try self.beginSpvBlock(label_id);

        // If this block didn't produce a value, simply return here.
        if (!ty.hasRuntimeBits())
            return null;

        // Combine the result from the blocks using the Phi instruction.

        const result_id = self.spv.allocId();

        // TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
        // are not allowed to be created from a phi node, and throw an error for those. For now, resolveTypeId already throws
        // an error for pointers.
        const result_type_id = try self.resolveTypeId(ty);
        _ = result_type_id;

        try self.code.emitRaw(self.spv.gpa, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...

        for (incoming_blocks.items) |incoming| {
            self.code.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id });
        }

        return result_id.toRef();
    }

    fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
        const br = self.air.instructions.items(.data)[inst].br;
        const block = self.blocks.get(br.block_inst).?;
        const operand_ty = self.air.typeOf(br.operand);

        if (operand_ty.hasRuntimeBits()) {
            const operand_id = try self.resolve(br.operand);
            // current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
            try block.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
        }

        try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id });
    }

    fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
        const pl_op = self.air.instructions.items(.data)[inst].pl_op;
        const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
        const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
        const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
        const condition_id = try self.resolve(pl_op.operand);

        // These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
        const then_label_id = self.spv.allocId();
        const else_label_id = self.spv.allocId();

        // TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
        // but i don't know if those will always resolve to the same block.

        try self.code.emit(self.spv.gpa, .OpBranchConditional, .{
            .condition = condition_id,
            .true_label = then_label_id.toRef(),
            .false_label = else_label_id.toRef(),
        });

        try self.beginSpvBlock(then_label_id);
        try self.genBody(then_body);
        try self.beginSpvBlock(else_label_id);
        try self.genBody(else_body);
    }

    fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
        const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
        const src_fname_id = try self.spv.resolveSourceFileName(self.decl);
        try self.code.emit(self.spv.gpa, .OpLine, .{
            .file = src_fname_id,
            .line = dbg_stmt.line,
            .column = dbg_stmt.column,
        });
    }

    fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !IdRef {
        const ty_op = self.air.instructions.items(.data)[inst].ty_op;
        const operand_id = try self.resolve(ty_op.operand);
        const ty = self.air.typeOfIndex(inst);

        const result_type_id = try self.resolveTypeId(ty);
        const result_id = self.spv.allocId();

        const access = spec.MemoryAccess.Extended{
            .Volatile = ty.isVolatilePtr(),
        };

        try self.code.emit(self.spv.gpa, .OpLoad, .{
            .id_result_type = result_type_id,
            .id_result = result_id,
            .pointer = operand_id,
            .memory_access = access,
        });

        return result_id.toRef();
    }

    fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
        const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
        const loop = self.air.extraData(Air.Block, ty_pl.payload);
        const body = self.air.extra[loop.end..][0..loop.data.body_len];
        const loop_label_id = self.spv.allocId();

        // Jump to the loop entry point
        try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() });

        // TODO: Look into OpLoopMerge.
        try self.beginSpvBlock(loop_label_id);
        try self.genBody(body);

        try self.code.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id.toRef() });
    }

    fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
        const operand = self.air.instructions.items(.data)[inst].un_op;
        const operand_ty = self.air.typeOf(operand);
        if (operand_ty.hasRuntimeBits()) {
            const operand_id = try self.resolve(operand);
            try self.code.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
        } else {
            try self.code.emit(self.spv.gpa, .OpReturn, {});
        }
    }

    fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
        const bin_op = self.air.instructions.items(.data)[inst].bin_op;
        const dst_ptr_id = try self.resolve(bin_op.lhs);
        const src_val_id = try self.resolve(bin_op.rhs);
        const lhs_ty = self.air.typeOf(bin_op.lhs);

        const access = spec.MemoryAccess.Extended{
            .Volatile = lhs_ty.isVolatilePtr(),
        };

        try self.code.emit(self.spv.gpa, .OpStore, .{
            .pointer = dst_ptr_id,
            .object = src_val_id,
            .memory_access = access,
        });
    }

    fn airUnreach(self: *DeclGen) !void {
        try self.code.emit(self.spv.gpa, .OpUnreachable, {});
    }
};