1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
|
const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const Signedness = std.builtin.Signedness;
const Zcu = @import("../Zcu.zig");
const Decl = Zcu.Decl;
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
const InternPool = @import("../InternPool.zig");
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const StorageClass = spec.StorageClass;
const SpvModule = @import("spirv/Module.zig");
const IdRange = SpvModule.IdRange;
const SpvSection = @import("spirv/Section.zig");
const SpvAssembler = @import("spirv/Assembler.zig");
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
pub const zig_call_abi_ver = 3;
const InternMap = std.AutoHashMapUnmanaged(struct { InternPool.Index, NavGen.Repr }, IdResult);
const PtrTypeMap = std.AutoHashMapUnmanaged(
struct { InternPool.Index, StorageClass, NavGen.Repr },
struct { ty_id: IdRef, fwd_emitted: bool },
);
const ControlFlow = union(enum) {
const Structured = struct {
/// This type indicates the way that a block is terminated. The
/// state of a particular block is used to track how a jump from
/// inside the block must reach the outside.
const Block = union(enum) {
const Incoming = struct {
src_label: IdRef,
/// Instruction that returns an u32 value of the
/// `Air.Inst.Index` that control flow should jump to.
next_block: IdRef,
};
const SelectionMerge = struct {
/// Incoming block from the `then` label.
/// Note that hte incoming block from the `else` label is
/// either given by the next element in the stack.
incoming: Incoming,
/// The label id of the cond_br's merge block.
/// For the top-most element in the stack, this
/// value is undefined.
merge_block: IdRef,
};
/// For a `selection` type block, we cannot use early exits, and we
/// must generate a 'merge ladder' of OpSelection instructions. To that end,
/// we keep a stack of the merges that still must be closed at the end of
/// a block.
///
/// This entire structure basically just resembles a tree like
/// a x
/// \ /
/// b o merge
/// \ /
/// c o merge
/// \ /
/// o merge
/// /
/// o jump to next block
selection: struct {
/// In order to know which merges we still need to do, we need to keep
/// a stack of those.
merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .empty,
},
/// For a `loop` type block, we can early-exit the block by
/// jumping to the loop exit node, and we don't need to generate
/// an entire stack of merges.
loop: struct {
/// The next block to jump to can be determined from any number
/// of conditions that jump to the loop exit.
merges: std.ArrayListUnmanaged(Incoming) = .empty,
/// The label id of the loop's merge block.
merge_block: IdRef,
},
fn deinit(self: *Structured.Block, a: Allocator) void {
switch (self.*) {
.selection => |*merge| merge.merge_stack.deinit(a),
.loop => |*merge| merge.merges.deinit(a),
}
self.* = undefined;
}
};
/// The stack of (structured) blocks that we are currently in. This determines
/// how exits from the current block must be handled.
block_stack: std.ArrayListUnmanaged(*Structured.Block) = .empty,
/// Maps `block` inst indices to the variable that the block's result
/// value must be written to.
block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef) = .empty,
};
const Unstructured = struct {
const Incoming = struct {
src_label: IdRef,
break_value_id: IdRef,
};
const Block = struct {
label: ?IdRef = null,
incoming_blocks: std.ArrayListUnmanaged(Incoming) = .empty,
};
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .empty,
};
structured: Structured,
unstructured: Unstructured,
pub fn deinit(self: *ControlFlow, a: Allocator) void {
switch (self.*) {
.structured => |*cf| {
cf.block_stack.deinit(a);
cf.block_results.deinit(a);
},
.unstructured => |*cf| {
cf.blocks.deinit(a);
},
}
self.* = undefined;
}
};
/// This structure holds information that is relevant to the entire compilation,
/// in contrast to `NavGen`, which only holds relevant information about a
/// single decl.
pub const Object = struct {
/// A general-purpose allocator that can be used for any allocation for this Object.
gpa: Allocator,
/// the SPIR-V module that represents the final binary.
spv: SpvModule,
/// The Zig module that this object file is generated for.
/// A map of Zig decl indices to SPIR-V decl indices.
nav_link: std.AutoHashMapUnmanaged(InternPool.Nav.Index, SpvModule.Decl.Index) = .empty,
/// A map of Zig InternPool indices for anonymous decls to SPIR-V decl indices.
uav_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, SpvModule.Decl.Index) = .empty,
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
intern_map: InternMap = .{},
/// This map serves a dual purpose:
/// - It keeps track of pointers that are currently being emitted, so that we can tell
/// if they are recursive and need an OpTypeForwardPointer.
/// - It caches pointers by child-type. This is required because sometimes we rely on
/// ID-equality for pointers, and pointers constructed via `ptrType()` aren't interned
/// via the usual `intern_map` mechanism.
ptr_types: PtrTypeMap = .{},
/// For test declarations for Vulkan, we have to add a push constant with a pointer to a
/// buffer that we can use. We only need to generate this once, this holds the link information
/// related to that.
error_push_constant: ?struct {
push_constant_ptr: SpvModule.Decl.Index,
} = null,
pub fn init(gpa: Allocator) Object {
return .{
.gpa = gpa,
.spv = SpvModule.init(gpa),
};
}
pub fn deinit(self: *Object) void {
self.spv.deinit();
self.nav_link.deinit(self.gpa);
self.uav_link.deinit(self.gpa);
self.intern_map.deinit(self.gpa);
self.ptr_types.deinit(self.gpa);
}
fn genNav(
self: *Object,
pt: Zcu.PerThread,
nav_index: InternPool.Nav.Index,
air: Air,
liveness: Liveness,
do_codegen: bool,
) !void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const structured_cfg = zcu.navFileScope(nav_index).mod.structured_cfg;
var nav_gen = NavGen{
.gpa = gpa,
.object = self,
.pt = pt,
.spv = &self.spv,
.owner_nav = nav_index,
.air = air,
.liveness = liveness,
.intern_map = &self.intern_map,
.ptr_types = &self.ptr_types,
.control_flow = switch (structured_cfg) {
true => .{ .structured = .{} },
false => .{ .unstructured = .{} },
},
.current_block_label = undefined,
.base_line = zcu.navSrcLine(nav_index),
};
defer nav_gen.deinit();
nav_gen.genNav(do_codegen) catch |err| switch (err) {
error.CodegenFail => {
try zcu.failed_codegen.put(gpa, nav_index, nav_gen.error_msg.?);
},
else => |other| {
// There might be an error that happened *after* self.error_msg
// was already allocated, so be sure to free it.
if (nav_gen.error_msg) |error_msg| {
error_msg.deinit(gpa);
}
return other;
},
};
}
pub fn updateFunc(
self: *Object,
pt: Zcu.PerThread,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
) !void {
const nav = pt.zcu.funcInfo(func_index).owner_nav;
// TODO: Separate types for generating decls and functions?
try self.genNav(pt, nav, air, liveness, true);
}
pub fn updateNav(
self: *Object,
pt: Zcu.PerThread,
nav: InternPool.Nav.Index,
) !void {
try self.genNav(pt, nav, undefined, undefined, false);
}
/// Fetch or allocate a result id for nav index. This function also marks the nav as alive.
/// Note: Function does not actually generate the nav, it just allocates an index.
pub fn resolveNav(self: *Object, zcu: *Zcu, nav_index: InternPool.Nav.Index) !SpvModule.Decl.Index {
const ip = &zcu.intern_pool;
const entry = try self.nav_link.getOrPut(self.gpa, nav_index);
if (!entry.found_existing) {
const nav = ip.getNav(nav_index);
// TODO: Extern fn?
const kind: SpvModule.Decl.Kind = if (ip.isFunctionType(nav.typeOf(ip)))
.func
else switch (nav.getAddrspace()) {
.generic => .invocation_global,
else => .global,
};
entry.value_ptr.* = try self.spv.allocDecl(kind);
}
return entry.value_ptr.*;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
const NavGen = struct {
/// A general-purpose allocator that can be used for any allocations for this NavGen.
gpa: Allocator,
/// The object that this decl is generated into.
object: *Object,
/// The Zig module that we are generating decls for.
pt: Zcu.PerThread,
/// The SPIR-V module that instructions should be emitted into.
/// This is the same as `self.object.spv`, repeated here for brevity.
spv: *SpvModule,
/// The decl we are currently generating code for.
owner_nav: InternPool.Nav.Index,
/// The intermediate code of the declaration we are currently generating. Note: If
/// the declaration is not a function, this value will be undefined!
air: Air,
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
/// Note: If the declaration is not a function, this value will be undefined!
liveness: Liveness,
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayListUnmanaged(IdRef) = .empty,
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32 = 0,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap = .{},
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
/// See `Object.intern_map`.
intern_map: *InternMap,
/// Module's pointer types, see `Object.ptr_types`.
ptr_types: *PtrTypeMap,
/// This field keeps track of the current state wrt structured or unstructured control flow.
control_flow: ControlFlow,
/// The label of the SPIR-V block we are currently generating.
current_block_label: IdRef,
/// The code (prologue and body) for the function we are currently generating code for.
func: SpvModule.Fn = .{},
/// The base offset of the current decl, which is what `dbg_stmt` is relative to.
base_line: u32,
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Zcu.ErrorMsg = null,
/// Possible errors the `genDecl` function may return.
const Error = error{ CodegenFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// The number of bits required to store the type.
/// For `integer` and `float`, this is equal to `bits`.
/// For `strange_integer` and `bool` this is the size of the backing integer.
/// For `composite_integer` this is 0 (TODO)
backing_bits: u16,
/// Null if this type is a scalar, or the length
/// of the vector otherwise.
vector_len: ?u32,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Data can be lowered into in two basic representations: indirect, which is when
/// a type is stored in memory, and direct, which is how a type is stored when its
/// a direct SPIR-V value.
const Repr = enum {
/// A SPIR-V value as it would be used in operations.
direct,
/// A SPIR-V value as it is stored in memory.
indirect,
};
/// Free resources owned by the NavGen.
pub fn deinit(self: *NavGen) void {
self.args.deinit(self.gpa);
self.inst_results.deinit(self.gpa);
self.control_flow.deinit(self.gpa);
self.func.deinit(self.gpa);
}
/// Return the target which we are currently compiling for.
pub fn getTarget(self: *NavGen) std.Target {
return self.pt.zcu.getTarget();
}
pub fn fail(self: *NavGen, comptime format: []const u8, args: anytype) Error {
@branchHint(.cold);
const zcu = self.pt.zcu;
const src_loc = zcu.navSrcLoc(self.owner_nav);
assert(self.error_msg == null);
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, format, args);
return error.CodegenFail;
}
pub fn todo(self: *NavGen, comptime format: []const u8, args: anytype) Error {
return self.fail("TODO (SPIR-V): " ++ format, args);
}
/// This imports the "default" extended instruction set for the target
/// For OpenCL, OpenCL.std.100. For Vulkan, GLSL.std.450.
fn importExtendedSet(self: *NavGen) !IdResult {
const target = self.getTarget();
return switch (target.os.tag) {
.opencl => try self.spv.importInstructionSet(.@"OpenCL.std"),
.vulkan => try self.spv.importInstructionSet(.@"GLSL.std.450"),
else => unreachable,
};
}
/// Fetch the result-id for a previously generated instruction or constant.
fn resolve(self: *NavGen, inst: Air.Inst.Ref) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
if (try self.air.value(inst, pt)) |val| {
const ty = self.typeOf(inst);
if (ty.zigTypeTag(zcu) == .@"fn") {
const fn_nav = switch (zcu.intern_pool.indexToKey(val.ip_index)) {
.@"extern" => |@"extern"| @"extern".owner_nav,
.func => |func| func.owner_nav,
else => unreachable,
};
const spv_decl_index = try self.object.resolveNav(zcu, fn_nav);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
return self.spv.declPtr(spv_decl_index).result_id;
}
return try self.constant(ty, val, .direct);
}
const index = inst.toIndex().?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
fn resolveUav(self: *NavGen, val: InternPool.Index) !IdRef {
// TODO: This cannot be a function at this point, but it should probably be handled anyway.
const zcu = self.pt.zcu;
const ty = Type.fromInterned(zcu.intern_pool.typeOf(val));
const decl_ptr_ty_id = try self.ptrType(ty, .Generic);
const spv_decl_index = blk: {
const entry = try self.object.uav_link.getOrPut(self.object.gpa, .{ val, .Function });
if (entry.found_existing) {
try self.addFunctionDep(entry.value_ptr.*, .Function);
const result_id = self.spv.declPtr(entry.value_ptr.*).result_id;
return try self.castToGeneric(decl_ptr_ty_id, result_id);
}
const spv_decl_index = try self.spv.allocDecl(.invocation_global);
try self.addFunctionDep(spv_decl_index, .Function);
entry.value_ptr.* = spv_decl_index;
break :blk spv_decl_index;
};
// TODO: At some point we will be able to generate this all constant here, but then all of
// constant() will need to be implemented such that it doesn't generate any at-runtime code.
// NOTE: Because this is a global, we really only want to initialize it once. Therefore the
// constant lowering of this value will need to be deferred to an initializer similar to
// other globals.
const result_id = self.spv.declPtr(spv_decl_index).result_id;
{
// Save the current state so that we can temporarily generate into a different function.
// TODO: This should probably be made a little more robust.
const func = self.func;
defer self.func = func;
const block_label = self.current_block_label;
defer self.current_block_label = block_label;
self.func = .{};
defer self.func.deinit(self.gpa);
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = initializer_id,
.function_control = .{},
.function_type = initializer_proto_ty_id,
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(ty, Value.fromInterned(val), .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = result_id,
.object = val_id,
});
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
const fn_decl_ptr_ty_id = try self.ptrType(ty, .Function);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = fn_decl_ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{initializer_id},
});
}
return try self.castToGeneric(decl_ptr_ty_id, result_id);
}
fn addFunctionDep(self: *NavGen, decl_index: SpvModule.Decl.Index, storage_class: StorageClass) !void {
const target = self.getTarget();
if (target.os.tag == .vulkan) {
// Shader entry point dependencies must be variables with Input or Output storage class
switch (storage_class) {
.Input, .Output => {
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
},
else => {},
}
} else {
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
}
}
fn castToGeneric(self: *NavGen, type_id: IdRef, ptr_id: IdRef) !IdRef {
const target = self.getTarget();
if (target.os.tag == .vulkan) {
return ptr_id;
} else {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = type_id,
.id_result = result_id,
.pointer = ptr_id,
});
return result_id;
}
}
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
/// block we are currently generating.
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
/// keep track of the previous block.
fn beginSpvBlock(self: *NavGen, label: IdResult) !void {
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label });
self.current_block_label = label;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *NavGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *NavGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *NavGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
/// Checks whether the type can be directly translated to SPIR-V vectors
fn isSpvVector(self: *NavGen, ty: Type) bool {
const zcu = self.pt.zcu;
const target = self.getTarget();
if (ty.zigTypeTag(zcu) != .vector) return false;
// TODO: This check must be expanded for types that can be represented
// as integers (enums / packed structs?) and types that are represented
// by multiple SPIR-V values.
const scalar_ty = ty.scalarType(zcu);
switch (scalar_ty.zigTypeTag(zcu)) {
.bool,
.int,
.float,
=> {},
else => return false,
}
const elem_ty = ty.childType(zcu);
const len = ty.vectorLen(zcu);
const is_scalar = elem_ty.isNumeric(zcu) or elem_ty.toIntern() == .bool_type;
const spirv_len = len > 1 and len <= 4;
const opencl_len = if (target.os.tag == .opencl) (len == 8 or len == 16) else false;
return is_scalar and (spirv_len or opencl_len);
}
fn arithmeticTypeInfo(self: *NavGen, ty: Type) ArithmeticTypeInfo {
const zcu = self.pt.zcu;
const target = self.getTarget();
var scalar_ty = ty.scalarType(zcu);
if (scalar_ty.zigTypeTag(zcu) == .@"enum") {
scalar_ty = scalar_ty.intTagType(zcu);
}
const vector_len = if (ty.isVector(zcu)) ty.vectorLen(zcu) else null;
return switch (scalar_ty.zigTypeTag(zcu)) {
.bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.backing_bits = self.backingIntBits(1).?,
.vector_len = vector_len,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.float => ArithmeticTypeInfo{
.bits = scalar_ty.floatBits(target),
.backing_bits = scalar_ty.floatBits(target), // TODO: F80?
.vector_len = vector_len,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.int => blk: {
const int_info = scalar_ty.intInfo(zcu);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{
.bits = int_info.bits,
.backing_bits = maybe_backing_bits orelse 0,
.vector_len = vector_len,
.signedness = int_info.signedness,
.class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer,
};
},
.@"enum" => unreachable,
.vector => unreachable,
else => unreachable, // Unhandled arithmetic type
};
}
/// Emits a bool constant in a particular representation.
fn constBool(self: *NavGen, value: bool, repr: Repr) !IdRef {
// TODO: Cache?
const section = &self.spv.sections.types_globals_constants;
switch (repr) {
.indirect => {
return try self.constInt(Type.u1, @intFromBool(value), .indirect);
},
.direct => {
const result_ty_id = try self.resolveType(Type.bool, .direct);
const result_id = self.spv.allocId();
switch (value) {
inline else => |val_ct| try section.emit(
self.spv.gpa,
if (val_ct) .OpConstantTrue else .OpConstantFalse,
.{
.id_result_type = result_ty_id,
.id_result = result_id,
},
),
}
return result_id;
},
}
}
/// Emits an integer constant.
/// This function, unlike SpvModule.constInt, takes care to bitcast
/// the value to an unsigned int first for Kernels.
fn constInt(self: *NavGen, ty: Type, value: anytype, repr: Repr) !IdRef {
// TODO: Cache?
const zcu = self.pt.zcu;
const scalar_ty = ty.scalarType(zcu);
const int_info = scalar_ty.intInfo(zcu);
// Use backing bits so that negatives are sign extended
const backing_bits = self.backingIntBits(int_info.bits).?; // Assertion failure means big int
const signedness: Signedness = switch (@typeInfo(@TypeOf(value))) {
.int => |int| int.signedness,
.comptime_int => if (value < 0) .signed else .unsigned,
else => unreachable,
};
const bits: u64 = switch (signedness) {
.signed => @bitCast(@as(i64, @intCast(value))),
.unsigned => @as(u64, @intCast(value)),
};
// Manually truncate the value to the right amount of bits.
const truncated_bits = if (backing_bits == 64)
bits
else
bits & (@as(u64, 1) << @intCast(backing_bits)) - 1;
const result_ty_id = try self.resolveType(scalar_ty, repr);
const result_id = self.spv.allocId();
const section = &self.spv.sections.types_globals_constants;
switch (backing_bits) {
0 => unreachable, // u0 is comptime
1...32 => try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = .{ .uint32 = @truncate(truncated_bits) },
}),
33...64 => try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = .{ .uint64 = truncated_bits },
}),
else => unreachable, // TODO: Large integer constants
}
if (!ty.isVector(zcu)) {
return result_id;
}
const n = ty.vectorLen(zcu);
const ids = try self.gpa.alloc(IdRef, n);
defer self.gpa.free(ids);
@memset(ids, result_id);
const vec_ty_id = try self.resolveType(ty, repr);
const vec_result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = vec_ty_id,
.id_result = vec_result_id,
.constituents = ids,
});
return vec_result_id;
}
/// Construct a struct at runtime.
/// ty must be a struct type.
/// Constituents should be in `indirect` representation (as the elements of a struct should be).
/// Result is in `direct` representation.
fn constructStruct(self: *NavGen, ty: Type, types: []const Type, constituents: []const IdRef) !IdRef {
assert(types.len == constituents.len);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// Construct a vector at runtime.
/// ty must be an vector type.
fn constructVector(self: *NavGen, ty: Type, constituents: []const IdRef) !IdRef {
const zcu = self.pt.zcu;
assert(ty.vectorLen(zcu) == constituents.len);
// Note: older versions of the Khronos SPRIV-LLVM translator crash on this instruction
// because it cannot construct structs which' operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// Currently this is the case for Intel OpenCL CPU runtime (2023-WW46), but the
// alternatives dont work properly:
// - using temporaries/pointers doesn't work properly with vectors of bool, causes
// backends that use llvm to crash
// - using OpVectorInsertDynamic doesn't work for non-spirv-vectors of bool.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// Construct a vector at runtime with all lanes set to the same value.
/// ty must be an vector type.
fn constructVectorSplat(self: *NavGen, ty: Type, constituent: IdRef) !IdRef {
const zcu = self.pt.zcu;
const n = ty.vectorLen(zcu);
const constituents = try self.gpa.alloc(IdRef, n);
defer self.gpa.free(constituents);
@memset(constituents, constituent);
return try self.constructVector(ty, constituents);
}
/// Construct an array at runtime.
/// ty must be an array type.
/// Constituents should be in `indirect` representation (as the elements of an array should be).
/// Result is in `direct` representation.
fn constructArray(self: *NavGen, ty: Type, constituents: []const IdRef) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// This function generates a load for a constant in direct (ie, non-memory) representation.
/// When the constant is simple, it can be generated directly using OpConstant instructions.
/// When the constant is more complicated however, it needs to be constructed using multiple values. This
/// is done by emitting a sequence of instructions that initialize the value.
//
/// This function should only be called during function code generation.
fn constant(self: *NavGen, ty: Type, val: Value, repr: Repr) !IdRef {
// Note: Using intern_map can only be used with constants that DO NOT generate any runtime code!!
// Ideally that should be all constants in the future, or it should be cleaned up somehow. For
// now, only use the intern_map on case-by-case basis by breaking to :cache.
if (self.intern_map.get(.{ val.toIntern(), repr })) |id| {
return id;
}
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const result_ty_id = try self.resolveType(ty, repr);
const ip = &zcu.intern_pool;
log.debug("lowering constant: ty = {}, val = {}, key = {s}", .{ ty.fmt(pt), val.fmtValue(pt), @tagName(ip.indexToKey(val.toIntern())) });
if (val.isUndefDeep(zcu)) {
return self.spv.constUndef(result_ty_id);
}
const section = &self.spv.sections.types_globals_constants;
const cacheable_id = cache: {
switch (ip.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.tuple_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => unreachable, // handled above
.variable,
.@"extern",
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_tuple,
.@"unreachable",
=> unreachable, // non-runtime values
.false, .true => break :cache try self.constBool(val.toBool(), repr),
},
.int => {
if (ty.isSignedInt(zcu)) {
break :cache try self.constInt(ty, val.toSignedInt(zcu), repr);
} else {
break :cache try self.constInt(ty, val.toUnsignedInt(zcu), repr);
}
},
.float => {
const lit: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
16 => .{ .uint32 = @as(u16, @bitCast(val.toFloat(f16, zcu))) },
32 => .{ .float32 = val.toFloat(f32, zcu) },
64 => .{ .float64 = val.toFloat(f64, zcu) },
80, 128 => unreachable, // TODO
else => unreachable,
};
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = lit,
});
break :cache result_id;
},
.err => |err| {
const value = try pt.getErrorValue(err.name);
break :cache try self.constInt(ty, value, repr);
},
.error_union => |error_union| {
// TODO: Error unions may be constructed with constant instructions if the payload type
// allows it. For now, just generate it here regardless.
const err_int_ty = try pt.errorIntType();
const err_ty = switch (error_union.val) {
.err_name => ty.errorUnionSet(zcu),
.payload => err_int_ty,
};
const err_val = switch (error_union.val) {
.err_name => |err_name| Value.fromInterned(try pt.intern(.{ .err = .{
.ty = ty.errorUnionSet(zcu).toIntern(),
.name = err_name,
} })),
.payload => try pt.intValue(err_int_ty, 0),
};
const payload_ty = ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// We use the error type directly as the type.
break :cache try self.constant(err_ty, err_val, .indirect);
}
const payload_val = Value.fromInterned(switch (error_union.val) {
.err_name => try pt.intern(.{ .undef = payload_ty.toIntern() }),
.payload => |payload| payload,
});
var constituents: [2]IdRef = undefined;
var types: [2]Type = undefined;
if (eu_layout.error_first) {
constituents[0] = try self.constant(err_ty, err_val, .indirect);
constituents[1] = try self.constant(payload_ty, payload_val, .indirect);
types = .{ err_ty, payload_ty };
} else {
constituents[0] = try self.constant(payload_ty, payload_val, .indirect);
constituents[1] = try self.constant(err_ty, err_val, .indirect);
types = .{ payload_ty, err_ty };
}
return try self.constructStruct(ty, &types, &constituents);
},
.enum_tag => {
const int_val = try val.intFromEnum(ty, pt);
const int_ty = ty.intTagType(zcu);
break :cache try self.constant(int_ty, int_val, repr);
},
.ptr => return self.constantPtr(val),
.slice => |slice| {
const ptr_ty = ty.slicePtrFieldType(zcu);
const ptr_id = try self.constantPtr(Value.fromInterned(slice.ptr));
const len_id = try self.constant(Type.usize, Value.fromInterned(slice.len), .indirect);
return self.constructStruct(
ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
},
.opt => {
const payload_ty = ty.optionalChild(zcu);
const maybe_payload_val = val.optionalValue(zcu);
if (!payload_ty.hasRuntimeBits(zcu)) {
break :cache try self.constBool(maybe_payload_val != null, .indirect);
} else if (ty.optionalReprIsPayload(zcu)) {
// Optional representation is a nullable pointer or slice.
if (maybe_payload_val) |payload_val| {
return try self.constant(payload_ty, payload_val, .indirect);
} else {
break :cache try self.spv.constNull(result_ty_id);
}
}
// Optional representation is a structure.
// { Payload, Bool }
const has_pl_id = try self.constBool(maybe_payload_val != null, .indirect);
const payload_id = if (maybe_payload_val) |payload_val|
try self.constant(payload_ty, payload_val, .indirect)
else
try self.spv.constUndef(try self.resolveType(payload_ty, .indirect));
return try self.constructStruct(
ty,
&.{ payload_ty, Type.bool },
&.{ payload_id, has_pl_id },
);
},
.aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
inline .array_type, .vector_type => |array_type, tag| {
const elem_ty = Type.fromInterned(array_type.child);
const constituents = try self.gpa.alloc(IdRef, @intCast(ty.arrayLenIncludingSentinel(zcu)));
defer self.gpa.free(constituents);
const child_repr: Repr = switch (tag) {
.array_type => .indirect,
.vector_type => .direct,
else => unreachable,
};
switch (aggregate.storage) {
.bytes => |bytes| {
// TODO: This is really space inefficient, perhaps there is a better
// way to do it?
for (constituents, bytes.toSlice(constituents.len, ip)) |*constituent, byte| {
constituent.* = try self.constInt(elem_ty, byte, child_repr);
}
},
.elems => |elems| {
for (constituents, elems) |*constituent, elem| {
constituent.* = try self.constant(elem_ty, Value.fromInterned(elem), child_repr);
}
},
.repeated_elem => |elem| {
@memset(constituents, try self.constant(elem_ty, Value.fromInterned(elem), child_repr));
},
}
switch (tag) {
.array_type => return self.constructArray(ty, constituents),
.vector_type => return self.constructVector(ty, constituents),
else => unreachable,
}
},
.struct_type => {
const struct_type = zcu.typeToStruct(ty).?;
if (struct_type.layout == .@"packed") {
return self.todo("packed struct constants", .{});
}
var types = std.ArrayList(Type).init(self.gpa);
defer types.deinit();
var constituents = std.ArrayList(IdRef).init(self.gpa);
defer constituents.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
// TODO: Padding?
const field_val = try val.fieldValue(pt, field_index);
const field_id = try self.constant(field_ty, field_val, .indirect);
try types.append(field_ty);
try constituents.append(field_id);
}
return try self.constructStruct(ty, types.items, constituents.items);
},
.tuple_type => unreachable, // TODO
else => unreachable,
},
.un => |un| {
const active_field = ty.unionTagFieldIndex(Value.fromInterned(un.tag), zcu).?;
const union_obj = zcu.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[active_field]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.constant(field_ty, Value.fromInterned(un.val), .direct)
else
null;
return try self.unionInit(ty, active_field, payload);
},
.memoized_call => unreachable,
}
};
try self.intern_map.putNoClobber(self.gpa, .{ val.toIntern(), repr }, cacheable_id);
return cacheable_id;
}
fn constantPtr(self: *NavGen, ptr_val: Value) Error!IdRef {
// TODO: Caching??
const pt = self.pt;
if (ptr_val.isUndef(pt.zcu)) {
const result_ty = ptr_val.typeOf(pt.zcu);
const result_ty_id = try self.resolveType(result_ty, .direct);
return self.spv.constUndef(result_ty_id);
}
var arena = std.heap.ArenaAllocator.init(self.gpa);
defer arena.deinit();
const derivation = try ptr_val.pointerDerivation(arena.allocator(), pt);
return self.derivePtr(derivation);
}
fn derivePtr(self: *NavGen, derivation: Value.PointerDeriveStep) Error!IdRef {
const pt = self.pt;
switch (derivation) {
.comptime_alloc_ptr, .comptime_field_ptr => unreachable,
.int => |int| {
const result_ty_id = try self.resolveType(int.ptr_ty, .direct);
// TODO: This can probably be an OpSpecConstantOp Bitcast, but
// that is not implemented by Mesa yet. Therefore, just generate it
// as a runtime operation.
const result_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = result_ty_id,
.id_result = result_ptr_id,
.integer_value = try self.constant(Type.usize, try pt.intValue(Type.usize, int.addr), .direct),
});
return result_ptr_id;
},
.nav_ptr => |nav| {
const result_ptr_ty = try pt.navPtrType(nav);
return self.constantNavRef(result_ptr_ty, nav);
},
.uav_ptr => |uav| {
const result_ptr_ty = Type.fromInterned(uav.orig_ty);
return self.constantUavRef(result_ptr_ty, uav);
},
.eu_payload_ptr => @panic("TODO"),
.opt_payload_ptr => @panic("TODO"),
.field_ptr => |field| {
const parent_ptr_id = try self.derivePtr(field.parent.*);
const parent_ptr_ty = try field.parent.ptrType(pt);
return self.structFieldPtr(field.result_ptr_ty, parent_ptr_ty, parent_ptr_id, field.field_idx);
},
.elem_ptr => |elem| {
const parent_ptr_id = try self.derivePtr(elem.parent.*);
const parent_ptr_ty = try elem.parent.ptrType(pt);
const index_id = try self.constInt(Type.usize, elem.elem_idx, .direct);
return self.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
},
.offset_and_cast => |oac| {
const parent_ptr_id = try self.derivePtr(oac.parent.*);
const parent_ptr_ty = try oac.parent.ptrType(pt);
disallow: {
if (oac.byte_offset != 0) break :disallow;
// Allow changing the pointer type child only to restructure arrays.
// e.g. [3][2]T to T is fine, as is [2]T -> [2][1]T.
const result_ty_id = try self.resolveType(oac.new_ptr_ty, .direct);
const result_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = result_ty_id,
.id_result = result_ptr_id,
.operand = parent_ptr_id,
});
return result_ptr_id;
}
return self.fail("cannot perform pointer cast: '{}' to '{}'", .{
parent_ptr_ty.fmt(pt),
oac.new_ptr_ty.fmt(pt),
});
},
}
}
fn constantUavRef(
self: *NavGen,
ty: Type,
uav: InternPool.Key.Ptr.BaseAddr.Uav,
) !IdRef {
// TODO: Merge this function with constantDeclRef.
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_id = try self.resolveType(ty, .direct);
const uav_ty = Type.fromInterned(ip.typeOf(uav.val));
switch (ip.indexToKey(uav.val)) {
.func => unreachable, // TODO
.@"extern" => assert(!ip.isFunctionType(uav_ty.toIntern())),
else => {},
}
// const is_fn_body = decl_ty.zigTypeTag(zcu) == .@"fn";
if (!uav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
// Pointer to nothing - return undefined
return self.spv.constUndef(ty_id);
}
// Uav refs are always generic.
assert(ty.ptrAddressSpace(zcu) == .generic);
const decl_ptr_ty_id = try self.ptrType(uav_ty, .Generic);
const ptr_id = try self.resolveUav(uav.val);
if (decl_ptr_ty_id != ty_id) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
fn constantNavRef(self: *NavGen, ty: Type, nav_index: InternPool.Nav.Index) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_id = try self.resolveType(ty, .direct);
const nav = ip.getNav(nav_index);
const nav_ty: Type = .fromInterned(nav.typeOf(ip));
switch (nav.status) {
.unresolved => unreachable,
.type_resolved => {}, // this is not a function or extern
.fully_resolved => |r| switch (ip.indexToKey(r.val)) {
.func => {
// TODO: Properly lower function pointers. For now we are going to hack around it and
// just generate an empty pointer. Function pointers are represented by a pointer to usize.
return try self.spv.constUndef(ty_id);
},
.@"extern" => if (ip.isFunctionType(nav_ty.toIntern())) @panic("TODO"),
else => {},
},
}
if (!nav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
// Pointer to nothing - return undefined.
return self.spv.constUndef(ty_id);
}
const spv_decl_index = try self.object.resolveNav(zcu, nav_index);
const spv_decl = self.spv.declPtr(spv_decl_index);
const decl_id = switch (spv_decl.kind) {
.func => unreachable, // TODO: Is this possible?
.global, .invocation_global => spv_decl.result_id,
};
const storage_class = self.spvStorageClass(nav.getAddrspace());
try self.addFunctionDep(spv_decl_index, storage_class);
const decl_ptr_ty_id = try self.ptrType(nav_ty, storage_class);
const ptr_id = switch (storage_class) {
.Generic => try self.castToGeneric(decl_ptr_ty_id, decl_id),
else => decl_id,
};
if (decl_ptr_ty_id != ty_id) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
// Turn a Zig type's name into a cache reference.
fn resolveTypeName(self: *NavGen, ty: Type) ![]const u8 {
var name = std.ArrayList(u8).init(self.gpa);
defer name.deinit();
try ty.print(name.writer(), self.pt);
return try name.toOwnedSlice();
}
/// Create an integer type suitable for storing at least 'bits' bits.
/// The integer type that is returned by this function is the type that is used to perform
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
/// a type with an exact size, use SpvModule.intType.
fn intType(self: *NavGen, signedness: std.builtin.Signedness, bits: u16) !IdRef {
const backing_bits = self.backingIntBits(bits) orelse {
// TODO: Integers too big for any native type are represented as "composite integers":
// An array of largestSupportedIntBits.
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
};
// Kernel only supports unsigned ints.
if (self.getTarget().os.tag == .vulkan) {
return self.spv.intType(signedness, backing_bits);
}
return self.spv.intType(.unsigned, backing_bits);
}
fn arrayType(self: *NavGen, len: u32, child_ty: IdRef) !IdRef {
// TODO: Cache??
const len_id = try self.constInt(Type.u32, len, .direct);
const result_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = child_ty,
.length = len_id,
});
return result_id;
}
fn ptrType(self: *NavGen, child_ty: Type, storage_class: StorageClass) !IdRef {
return try self.ptrType2(child_ty, storage_class, .indirect);
}
fn ptrType2(self: *NavGen, child_ty: Type, storage_class: StorageClass, child_repr: Repr) !IdRef {
const key = .{ child_ty.toIntern(), storage_class, child_repr };
const entry = try self.ptr_types.getOrPut(self.gpa, key);
if (entry.found_existing) {
const fwd_id = entry.value_ptr.ty_id;
if (!entry.value_ptr.fwd_emitted) {
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeForwardPointer, .{
.pointer_type = fwd_id,
.storage_class = storage_class,
});
entry.value_ptr.fwd_emitted = true;
}
return fwd_id;
}
const result_id = self.spv.allocId();
entry.value_ptr.* = .{
.ty_id = result_id,
.fwd_emitted = false,
};
const child_ty_id = try self.resolveType(child_ty, child_repr);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
.id_result = result_id,
.storage_class = storage_class,
.type = child_ty_id,
});
return result_id;
}
fn functionType(self: *NavGen, return_ty: Type, param_types: []const Type) !IdRef {
// TODO: Cache??
const param_ids = try self.gpa.alloc(IdRef, param_types.len);
defer self.gpa.free(param_ids);
for (param_types, param_ids) |param_ty, *param_id| {
param_id.* = try self.resolveType(param_ty, .direct);
}
const ty_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeFunction, .{
.id_result = ty_id,
.return_type = try self.resolveFnReturnType(return_ty),
.id_ref_2 = param_ids,
});
return ty_id;
}
fn zigScalarOrVectorTypeLike(self: *NavGen, new_ty: Type, base_ty: Type) !Type {
const pt = self.pt;
const new_scalar_ty = new_ty.scalarType(pt.zcu);
if (!base_ty.isVector(pt.zcu)) {
return new_scalar_ty;
}
return try pt.vectorType(.{
.len = base_ty.vectorLen(pt.zcu),
.child = new_scalar_ty.toIntern(),
});
}
/// Generate a union type. Union types are always generated with the
/// most aligned field active. If the tag alignment is greater
/// than that of the payload, a regular union (non-packed, with both tag and
/// payload), will be generated as follows:
/// struct {
/// tag: TagType,
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// padding: [padding_size]u8,
/// }
/// If the payload alignment is greater than that of the tag:
/// struct {
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// tag: TagType,
/// padding: [padding_size]u8,
/// }
/// If any of the fields' size is 0, it will be omitted.
fn resolveUnionType(self: *NavGen, ty: Type) !IdRef {
const zcu = self.pt.zcu;
const ip = &zcu.intern_pool;
const union_obj = zcu.typeToUnion(ty).?;
if (union_obj.flagsUnordered(ip).layout == .@"packed") {
return self.todo("packed union types", .{});
}
const layout = self.unionLayout(ty);
if (!layout.has_payload) {
// No payload, so represent this as just the tag type.
return try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
}
var member_types: [4]IdRef = undefined;
var member_names: [4][]const u8 = undefined;
const u8_ty_id = try self.resolveType(Type.u8, .direct); // TODO: What if Int8Type is not enabled?
if (layout.tag_size != 0) {
const tag_ty_id = try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
member_types[layout.tag_index] = tag_ty_id;
member_names[layout.tag_index] = "(tag)";
}
if (layout.payload_size != 0) {
const payload_ty_id = try self.resolveType(layout.payload_ty, .indirect);
member_types[layout.payload_index] = payload_ty_id;
member_names[layout.payload_index] = "(payload)";
}
if (layout.payload_padding_size != 0) {
const payload_padding_ty_id = try self.arrayType(@intCast(layout.payload_padding_size), u8_ty_id);
member_types[layout.payload_padding_index] = payload_padding_ty_id;
member_names[layout.payload_padding_index] = "(payload padding)";
}
if (layout.padding_size != 0) {
const padding_ty_id = try self.arrayType(@intCast(layout.padding_size), u8_ty_id);
member_types[layout.padding_index] = padding_ty_id;
member_names[layout.padding_index] = "(padding)";
}
const result_id = self.spv.allocId();
try self.spv.structType(result_id, member_types[0..layout.total_fields], member_names[0..layout.total_fields]);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
return result_id;
}
fn resolveFnReturnType(self: *NavGen, ret_ty: Type) !IdRef {
const zcu = self.pt.zcu;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// If the return type is an error set or an error union, then we make this
// anyerror return type instead, so that it can be coerced into a function
// pointer type which has anyerror as the return type.
if (ret_ty.isError(zcu)) {
return self.resolveType(Type.anyerror, .direct);
} else {
return self.resolveType(Type.void, .direct);
}
}
return try self.resolveType(ret_ty, .direct);
}
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
fn resolveType(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
if (self.intern_map.get(.{ ty.toIntern(), repr })) |id| {
return id;
}
const id = try self.resolveTypeInner(ty, repr);
try self.intern_map.put(self.gpa, .{ ty.toIntern(), repr }, id);
return id;
}
fn resolveTypeInner(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
log.debug("resolveType: ty = {}", .{ty.fmt(pt)});
const target = self.getTarget();
const section = &self.spv.sections.types_globals_constants;
switch (ty.zigTypeTag(zcu)) {
.noreturn => {
assert(repr == .direct);
return try self.spv.voidType();
},
.void => switch (repr) {
.direct => {
return try self.spv.voidType();
},
// Pointers to void
.indirect => {
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "void",
});
return result_id;
},
},
.bool => switch (repr) {
.direct => return try self.spv.boolType(),
.indirect => return try self.resolveType(Type.u1, .indirect),
},
.int => {
const int_info = ty.intInfo(zcu);
if (int_info.bits == 0) {
// Some times, the backend will be asked to generate a pointer to i0. OpTypeInt
// with 0 bits is invalid, so return an opaque type in this case.
assert(repr == .indirect);
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "u0",
});
return result_id;
}
return try self.intType(int_info.signedness, int_info.bits);
},
.@"enum" => {
const tag_ty = ty.intTagType(zcu);
return try self.resolveType(tag_ty, repr);
},
.float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
return try self.spv.floatType(bits);
},
.array => {
const elem_ty = ty.childType(zcu);
const elem_ty_id = try self.resolveType(elem_ty, .indirect);
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(zcu)) orelse {
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(zcu)});
};
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached when the backend is asked to generate a pointer to
// an array of some zero-bit type. This should always be an indirect path.
assert(repr == .indirect);
// We cannot use the child type here, so just use an opaque type.
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "zero-sized array",
});
return result_id;
} else if (total_len == 0) {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached for example when there is a slicing of a pointer
// that produces a zero-length array. In all cases where this type can be generated,
// this should be an indirect path.
assert(repr == .indirect);
// In this case, we have an array of a non-zero sized type. In this case,
// generate an array of 1 element instead, so that ptr_elem_ptr instructions
// can be lowered to ptrAccessChain instead of manually performing the math.
return try self.arrayType(1, elem_ty_id);
} else {
const result_id = try self.arrayType(total_len, elem_ty_id);
if (target.os.tag == .vulkan) {
try self.spv.decorate(result_id, .{ .ArrayStride = .{
.array_stride = @intCast(elem_ty.abiSize(zcu)),
} });
}
return result_id;
}
},
.@"fn" => switch (repr) {
.direct => {
const fn_info = zcu.typeToFunc(ty).?;
comptime assert(zig_call_abi_ver == 3);
switch (fn_info.cc) {
.auto,
.spirv_kernel,
.spirv_fragment,
.spirv_vertex,
.spirv_device,
=> {},
else => unreachable,
}
// Guaranteed by callConvSupportsVarArgs, there are no SPIR-V CCs which support
// varargs.
assert(!fn_info.is_var_args);
// Note: Logic is different from functionType().
const param_ty_ids = try self.gpa.alloc(IdRef, fn_info.param_types.len);
defer self.gpa.free(param_ty_ids);
var param_index: usize = 0;
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
param_ty_ids[param_index] = try self.resolveType(param_ty, .direct);
param_index += 1;
}
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeFunction, .{
.id_result = result_id,
.return_type = return_ty_id,
.id_ref_2 = param_ty_ids[0..param_index],
});
return result_id;
},
.indirect => {
// TODO: Represent function pointers properly.
// For now, just use an usize type.
return try self.resolveType(Type.usize, .indirect);
},
},
.pointer => {
const ptr_info = ty.ptrInfo(zcu);
const child_ty = Type.fromInterned(ptr_info.child);
const storage_class = self.spvStorageClass(ptr_info.flags.address_space);
const ptr_ty_id = try self.ptrType(child_ty, storage_class);
if (target.os.tag == .vulkan and ptr_info.flags.size == .many) {
try self.spv.decorate(ptr_ty_id, .{ .ArrayStride = .{
.array_stride = @intCast(child_ty.abiSize(zcu)),
} });
}
if (ptr_info.flags.size != .slice) {
return ptr_ty_id;
}
const size_ty_id = try self.resolveType(Type.usize, .direct);
const result_id = self.spv.allocId();
try self.spv.structType(
result_id,
&.{ ptr_ty_id, size_ty_id },
&.{ "ptr", "len" },
);
return result_id;
},
.vector => {
const elem_ty = ty.childType(zcu);
const elem_ty_id = try self.resolveType(elem_ty, repr);
const len = ty.vectorLen(zcu);
if (self.isSpvVector(ty)) {
return try self.spv.vectorType(len, elem_ty_id);
} else {
return try self.arrayType(len, elem_ty_id);
}
},
.@"struct" => {
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
.tuple_type => |tuple| {
const member_types = try self.gpa.alloc(IdRef, tuple.values.len);
defer self.gpa.free(member_types);
var member_index: usize = 0;
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(zcu)) continue;
member_types[member_index] = try self.resolveType(Type.fromInterned(field_ty), .indirect);
member_index += 1;
}
const result_id = self.spv.allocId();
try self.spv.structType(result_id, member_types[0..member_index], null);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
if (target.os.tag == .vulkan) {
try self.spv.decorate(result_id, .Block); // Decorate all structs as block for now...
}
return result_id;
},
.struct_type => ip.loadStructType(ty.toIntern()),
else => unreachable,
};
if (struct_type.layout == .@"packed") {
return try self.resolveType(Type.fromInterned(struct_type.backingIntTypeUnordered(ip)), .direct);
}
var member_types = std.ArrayList(IdRef).init(self.gpa);
defer member_types.deinit();
var member_names = std.ArrayList([]const u8).init(self.gpa);
defer member_names.deinit();
var index: u32 = 0;
var it = struct_type.iterateRuntimeOrder(ip);
const result_id = self.spv.allocId();
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
if (target.os.tag == .vulkan) {
try self.spv.decorateMember(result_id, index, .{ .Offset = .{
.byte_offset = @intCast(ty.structFieldOffset(field_index, zcu)),
} });
}
const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
try ip.getOrPutStringFmt(zcu.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
try member_types.append(try self.resolveType(field_ty, .indirect));
try member_names.append(field_name.toSlice(ip));
index += 1;
}
try self.spv.structType(result_id, member_types.items, member_names.items);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
if (target.os.tag == .vulkan) {
try self.spv.decorate(result_id, .Block); // Decorate all structs as block for now...
}
return result_id;
},
.optional => {
const payload_ty = ty.optionalChild(zcu);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// Just use a bool.
// Note: Always generate the bool with indirect format, to save on some sanity
// Perform the conversion to a direct bool when the field is extracted.
return try self.resolveType(Type.bool, .indirect);
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
if (ty.optionalReprIsPayload(zcu)) {
// Optional is actually a pointer or a slice.
return payload_ty_id;
}
const bool_ty_id = try self.resolveType(Type.bool, .indirect);
const result_id = self.spv.allocId();
try self.spv.structType(
result_id,
&.{ payload_ty_id, bool_ty_id },
&.{ "payload", "valid" },
);
return result_id;
},
.@"union" => return try self.resolveUnionType(ty),
.error_set => return try self.resolveType(Type.u16, repr),
.error_union => {
const payload_ty = ty.errorUnionPayload(zcu);
const error_ty_id = try self.resolveType(Type.anyerror, .indirect);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return error_ty_id;
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
var member_types: [2]IdRef = undefined;
var member_names: [2][]const u8 = undefined;
if (eu_layout.error_first) {
// Put the error first
member_types = .{ error_ty_id, payload_ty_id };
member_names = .{ "error", "payload" };
// TODO: ABI padding?
} else {
// Put the payload first.
member_types = .{ payload_ty_id, error_ty_id };
member_names = .{ "payload", "error" };
// TODO: ABI padding?
}
const result_id = self.spv.allocId();
try self.spv.structType(result_id, &member_types, &member_names);
return result_id;
},
.@"opaque" => {
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = type_name,
});
return result_id;
},
.null,
.undefined,
.enum_literal,
.comptime_float,
.comptime_int,
.type,
=> unreachable, // Must be comptime.
.frame, .@"anyframe" => unreachable, // TODO
}
}
fn spvStorageClass(self: *NavGen, as: std.builtin.AddressSpace) StorageClass {
const target = self.getTarget();
return switch (as) {
.generic => switch (target.os.tag) {
.vulkan => .Function,
.opencl => .Generic,
else => unreachable,
},
.shared => .Workgroup,
.local => .Function,
.global => switch (target.os.tag) {
.opencl => .CrossWorkgroup,
.vulkan => .PhysicalStorageBuffer,
else => unreachable,
},
.constant => .UniformConstant,
.push_constant => .PushConstant,
.input => .Input,
.output => .Output,
.uniform => .Uniform,
.storage_buffer => .StorageBuffer,
.gs,
.fs,
.ss,
.param,
.flash,
.flash1,
.flash2,
.flash3,
.flash4,
.flash5,
.cog,
.lut,
.hub,
=> unreachable,
};
}
const ErrorUnionLayout = struct {
payload_has_bits: bool,
error_first: bool,
fn errorFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 0 else 1;
}
fn payloadFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 1 else 0;
}
};
fn errorUnionLayout(self: *NavGen, payload_ty: Type) ErrorUnionLayout {
const pt = self.pt;
const zcu = pt.zcu;
const error_align = Type.anyerror.abiAlignment(zcu);
const payload_align = payload_ty.abiAlignment(zcu);
const error_first = error_align.compare(.gt, payload_align);
return .{
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(zcu),
.error_first = error_first,
};
}
const UnionLayout = struct {
/// If false, this union is represented
/// by only an integer of the tag type.
has_payload: bool,
tag_size: u32,
tag_index: u32,
/// Note: This is the size of the payload type itself, NOT the size of the ENTIRE payload.
/// Use `has_payload` instead!!
payload_ty: Type,
payload_size: u32,
payload_index: u32,
payload_padding_size: u32,
payload_padding_index: u32,
padding_size: u32,
padding_index: u32,
total_fields: u32,
};
fn unionLayout(self: *NavGen, ty: Type) UnionLayout {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const layout = ty.unionGetLayout(zcu);
const union_obj = zcu.typeToUnion(ty).?;
var union_layout = UnionLayout{
.has_payload = layout.payload_size != 0,
.tag_size = @intCast(layout.tag_size),
.tag_index = undefined,
.payload_ty = undefined,
.payload_size = undefined,
.payload_index = undefined,
.payload_padding_size = undefined,
.payload_padding_index = undefined,
.padding_size = @intCast(layout.padding),
.padding_index = undefined,
.total_fields = undefined,
};
if (union_layout.has_payload) {
const most_aligned_field = layout.most_aligned_field;
const most_aligned_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[most_aligned_field]);
union_layout.payload_ty = most_aligned_field_ty;
union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(zcu));
} else {
union_layout.payload_size = 0;
}
union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size);
const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
var field_index: u32 = 0;
if (union_layout.tag_size != 0 and tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.payload_size != 0) {
union_layout.payload_index = field_index;
field_index += 1;
}
if (union_layout.payload_padding_size != 0) {
union_layout.payload_padding_index = field_index;
field_index += 1;
}
if (union_layout.tag_size != 0 and !tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.padding_size != 0) {
union_layout.padding_index = field_index;
field_index += 1;
}
union_layout.total_fields = field_index;
return union_layout;
}
/// This structure represents a "temporary" value: Something we are currently
/// operating on. It typically lives no longer than the function that
/// implements a particular AIR operation. These are used to easier
/// implement vectorizable operations (see Vectorization and the build*
/// functions), and typically are only used for vectors of primitive types.
const Temporary = struct {
/// The type of the temporary. This is here mainly
/// for easier bookkeeping. Because we will never really
/// store Temporaries, they only cause extra stack space,
/// therefore no real storage is wasted.
ty: Type,
/// The value that this temporary holds. This is not necessarily
/// a value that is actually usable, or a single value: It is virtual
/// until materialize() is called, at which point is turned into
/// the usual SPIR-V representation of `self.ty`.
value: Temporary.Value,
const Value = union(enum) {
singleton: IdResult,
exploded_vector: IdRange,
};
fn init(ty: Type, singleton: IdResult) Temporary {
return .{ .ty = ty, .value = .{ .singleton = singleton } };
}
fn materialize(self: Temporary, ng: *NavGen) !IdResult {
const zcu = ng.pt.zcu;
switch (self.value) {
.singleton => |id| return id,
.exploded_vector => |range| {
assert(self.ty.isVector(zcu));
assert(self.ty.vectorLen(zcu) == range.len);
const consituents = try ng.gpa.alloc(IdRef, range.len);
defer ng.gpa.free(consituents);
for (consituents, 0..range.len) |*id, i| {
id.* = range.at(i);
}
return ng.constructVector(self.ty, consituents);
},
}
}
fn vectorization(self: Temporary, ng: *NavGen) Vectorization {
return Vectorization.fromType(self.ty, ng);
}
fn pun(self: Temporary, new_ty: Type) Temporary {
return .{
.ty = new_ty,
.value = self.value,
};
}
/// 'Explode' a temporary into separate elements. This turns a vector
/// into a bag of elements.
fn explode(self: Temporary, ng: *NavGen) !IdRange {
const zcu = ng.pt.zcu;
// If the value is a scalar, then this is a no-op.
if (!self.ty.isVector(zcu)) {
return switch (self.value) {
.singleton => |id| .{ .base = @intFromEnum(id), .len = 1 },
.exploded_vector => |range| range,
};
}
const ty_id = try ng.resolveType(self.ty.scalarType(zcu), .direct);
const n = self.ty.vectorLen(zcu);
const results = ng.spv.allocIds(n);
const id = switch (self.value) {
.singleton => |id| id,
.exploded_vector => |range| return range,
};
for (0..n) |i| {
const indexes = [_]u32{@intCast(i)};
try ng.func.body.emit(ng.spv.gpa, .OpCompositeExtract, .{
.id_result_type = ty_id,
.id_result = results.at(i),
.composite = id,
.indexes = &indexes,
});
}
return results;
}
};
/// Initialize a `Temporary` from an AIR value.
fn temporary(self: *NavGen, inst: Air.Inst.Ref) !Temporary {
return .{
.ty = self.typeOf(inst),
.value = .{ .singleton = try self.resolve(inst) },
};
}
/// This union describes how a particular operation should be vectorized.
/// That depends on the operation and number of components of the inputs.
const Vectorization = union(enum) {
/// This is an operation between scalars.
scalar,
/// This is an operation between SPIR-V vectors.
/// Value is number of components.
spv_vectorized: u32,
/// This operation is unrolled into separate operations.
/// Inputs may still be SPIR-V vectors, for example,
/// when the operation can't be vectorized in SPIR-V.
/// Value is number of components.
unrolled: u32,
/// Derive a vectorization from a particular type. This usually
/// only checks the size, but the source-of-truth is implemented
/// by `isSpvVector()`.
fn fromType(ty: Type, ng: *NavGen) Vectorization {
const zcu = ng.pt.zcu;
if (!ty.isVector(zcu)) {
return .scalar;
} else if (ng.isSpvVector(ty)) {
return .{ .spv_vectorized = ty.vectorLen(zcu) };
} else {
return .{ .unrolled = ty.vectorLen(zcu) };
}
}
/// Given two vectorization methods, compute a "unification": a fallback
/// that works for both, according to the following rules:
/// - Scalars may broadcast
/// - SPIR-V vectorized operations may unroll
/// - Prefer scalar > SPIR-V vectorized > unrolled
fn unify(a: Vectorization, b: Vectorization) Vectorization {
if (a == .scalar and b == .scalar) {
return .scalar;
} else if (a == .spv_vectorized and b == .spv_vectorized) {
assert(a.components() == b.components());
return .{ .spv_vectorized = a.components() };
} else if (a == .unrolled or b == .unrolled) {
if (a == .unrolled and b == .unrolled) {
assert(a.components() == b.components());
return .{ .unrolled = a.components() };
} else if (a == .unrolled) {
return .{ .unrolled = a.components() };
} else if (b == .unrolled) {
return .{ .unrolled = b.components() };
} else {
unreachable;
}
} else {
if (a == .spv_vectorized) {
return .{ .spv_vectorized = a.components() };
} else if (b == .spv_vectorized) {
return .{ .spv_vectorized = b.components() };
} else {
unreachable;
}
}
}
/// Force this vectorization to be unrolled, if its
/// an operation involving vectors.
fn unroll(self: Vectorization) Vectorization {
return switch (self) {
.scalar, .unrolled => self,
.spv_vectorized => |n| .{ .unrolled = n },
};
}
/// Query the number of components that inputs of this operation have.
/// Note: for broadcasting scalars, this returns the number of elements
/// that the broadcasted vector would have.
fn components(self: Vectorization) u32 {
return switch (self) {
.scalar => 1,
.spv_vectorized => |n| n,
.unrolled => |n| n,
};
}
/// Query the number of operations involving this vectorization.
/// This is basically the number of components, except that SPIR-V vectorized
/// operations only need a single SPIR-V instruction.
fn operations(self: Vectorization) u32 {
return switch (self) {
.scalar, .spv_vectorized => 1,
.unrolled => |n| n,
};
}
/// Turns `ty` into the result-type of an individual vector operation.
/// `ty` may be a scalar or vector, it doesn't matter.
fn operationType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
const pt = ng.pt;
const scalar_ty = ty.scalarType(pt.zcu);
return switch (self) {
.scalar, .unrolled => scalar_ty,
.spv_vectorized => |n| try pt.vectorType(.{
.len = n,
.child = scalar_ty.toIntern(),
}),
};
}
/// Turns `ty` into the result-type of the entire operation.
/// `ty` may be a scalar or vector, it doesn't matter.
fn resultType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
const pt = ng.pt;
const scalar_ty = ty.scalarType(pt.zcu);
return switch (self) {
.scalar => scalar_ty,
.unrolled, .spv_vectorized => |n| try pt.vectorType(.{
.len = n,
.child = scalar_ty.toIntern(),
}),
};
}
/// Before a temporary can be used, some setup may need to be one. This function implements
/// this setup, and returns a new type that holds the relevant information on how to access
/// elements of the input.
fn prepare(self: Vectorization, ng: *NavGen, tmp: Temporary) !PreparedOperand {
const pt = ng.pt;
const is_vector = tmp.ty.isVector(pt.zcu);
const is_spv_vector = ng.isSpvVector(tmp.ty);
const value: PreparedOperand.Value = switch (tmp.value) {
.singleton => |id| switch (self) {
.scalar => blk: {
assert(!is_vector);
break :blk .{ .scalar = id };
},
.spv_vectorized => blk: {
if (is_vector) {
assert(is_spv_vector);
break :blk .{ .spv_vectorwise = id };
}
// Broadcast scalar into vector.
const vector_ty = try pt.vectorType(.{
.len = self.components(),
.child = tmp.ty.toIntern(),
});
const vector = try ng.constructVectorSplat(vector_ty, id);
return .{
.ty = vector_ty,
.value = .{ .spv_vectorwise = vector },
};
},
.unrolled => blk: {
if (is_vector) {
break :blk .{ .vector_exploded = try tmp.explode(ng) };
} else {
break :blk .{ .scalar_broadcast = id };
}
},
},
.exploded_vector => |range| switch (self) {
.scalar => unreachable,
.spv_vectorized => |n| blk: {
// We can vectorize this operation, but we have an exploded vector. This can happen
// when a vectorizable operation succeeds a non-vectorizable operation. In this case,
// pack up the IDs into a SPIR-V vector. This path should not be able to be hit with
// a type that cannot do that.
assert(is_spv_vector);
assert(range.len == n);
const vec = try tmp.materialize(ng);
break :blk .{ .spv_vectorwise = vec };
},
.unrolled => |n| blk: {
assert(range.len == n);
break :blk .{ .vector_exploded = range };
},
},
};
return .{
.ty = tmp.ty,
.value = value,
};
}
/// Finalize the results of an operation back into a temporary. `results` is
/// a list of result-ids of the operation.
fn finalize(self: Vectorization, ty: Type, results: IdRange) Temporary {
assert(self.operations() == results.len);
const value: Temporary.Value = switch (self) {
.scalar, .spv_vectorized => blk: {
break :blk .{ .singleton = results.at(0) };
},
.unrolled => blk: {
break :blk .{ .exploded_vector = results };
},
};
return .{ .ty = ty, .value = value };
}
/// This struct represents an operand that has gone through some setup, and is
/// ready to be used as part of an operation.
const PreparedOperand = struct {
ty: Type,
value: PreparedOperand.Value,
/// The types of value that a prepared operand can hold internally. Depends
/// on the operation and input value.
const Value = union(enum) {
/// A single scalar value that is used by a scalar operation.
scalar: IdResult,
/// A single scalar that is broadcasted in an unrolled operation.
scalar_broadcast: IdResult,
/// A SPIR-V vector that is used in SPIR-V vectorize operation.
spv_vectorwise: IdResult,
/// A vector represented by a consecutive list of IDs that is used in an unrolled operation.
vector_exploded: IdRange,
};
/// Query the value at a particular index of the operation. Note that
/// the index is *not* the component/lane, but the index of the *operation*. When
/// this operation is vectorized, the return value of this function is a SPIR-V vector.
/// See also `Vectorization.operations()`.
fn at(self: PreparedOperand, i: usize) IdResult {
switch (self.value) {
.scalar => |id| {
assert(i == 0);
return id;
},
.scalar_broadcast => |id| {
return id;
},
.spv_vectorwise => |id| {
assert(i == 0);
return id;
},
.vector_exploded => |range| {
return range.at(i);
},
}
}
};
};
/// A utility function to compute the vectorization style of
/// a list of values. These values may be any of the following:
/// - A `Vectorization` instance
/// - A Type, in which case the vectorization is computed via `Vectorization.fromType`.
/// - A Temporary, in which case the vectorization is computed via `Temporary.vectorization`.
fn vectorization(self: *NavGen, args: anytype) Vectorization {
var v: Vectorization = undefined;
assert(args.len >= 1);
inline for (args, 0..) |arg, i| {
const iv: Vectorization = switch (@TypeOf(arg)) {
Vectorization => arg,
Type => Vectorization.fromType(arg, self),
Temporary => arg.vectorization(self),
else => @compileError("invalid type"),
};
if (i == 0) {
v = iv;
} else {
v = v.unify(iv);
}
}
return v;
}
/// This function builds an OpSConvert of OpUConvert depending on the
/// signedness of the types.
fn buildIntConvert(self: *NavGen, dst_ty: Type, src: Temporary) !Temporary {
const zcu = self.pt.zcu;
const dst_ty_id = try self.resolveType(dst_ty.scalarType(zcu), .direct);
const src_ty_id = try self.resolveType(src.ty.scalarType(zcu), .direct);
const v = self.vectorization(.{ dst_ty, src });
const result_ty = try v.resultType(self, dst_ty);
// We can directly compare integers, because those type-IDs are cached.
if (dst_ty_id == src_ty_id) {
// Nothing to do, type-pun to the right value.
// Note, Caller guarantees that the types fit (or caller will normalize after),
// so we don't have to normalize here.
// Note, dst_ty may be a scalar type even if we expect a vector, so we have to
// convert to the right type here.
return src.pun(result_ty);
}
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, dst_ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const opcode: Opcode = if (dst_ty.isSignedInt(zcu)) .OpSConvert else .OpUConvert;
const op_src = try v.prepare(self, src);
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_src.at(i));
}
return v.finalize(result_ty, results);
}
fn buildFma(self: *NavGen, a: Temporary, b: Temporary, c: Temporary) !Temporary {
const target = self.getTarget();
const v = self.vectorization(.{ a, b, c });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, a.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, a.ty);
const op_a = try v.prepare(self, a);
const op_b = try v.prepare(self, b);
const op_c = try v.prepare(self, c);
const set = try self.importExtendedSet();
// TODO: Put these numbers in some definition
const instruction: u32 = switch (target.os.tag) {
.opencl => 26, // fma
// NOTE: Vulkan's FMA instruction does *NOT* produce the right values!
// its precision guarantees do NOT match zigs and it does NOT match OpenCLs!
// it needs to be emulated!
.vulkan => unreachable, // TODO: See above
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = instruction },
.id_ref_4 = &.{ op_a.at(i), op_b.at(i), op_c.at(i) },
});
}
return v.finalize(result_ty, results);
}
fn buildSelect(self: *NavGen, condition: Temporary, lhs: Temporary, rhs: Temporary) !Temporary {
const zcu = self.pt.zcu;
const v = self.vectorization(.{ condition, lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, lhs.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, lhs.ty);
assert(condition.ty.scalarType(zcu).zigTypeTag(zcu) == .bool);
const cond = try v.prepare(self, condition);
const object_1 = try v.prepare(self, lhs);
const object_2 = try v.prepare(self, rhs);
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.condition = cond.at(i),
.object_1 = object_1.at(i),
.object_2 = object_2.at(i),
});
}
return v.finalize(result_ty, results);
}
const CmpPredicate = enum {
l_eq,
l_ne,
i_ne,
i_eq,
s_lt,
s_gt,
s_le,
s_ge,
u_lt,
u_gt,
u_le,
u_ge,
f_oeq,
f_une,
f_olt,
f_ole,
f_ogt,
f_oge,
};
fn buildCmp(self: *NavGen, pred: CmpPredicate, lhs: Temporary, rhs: Temporary) !Temporary {
const v = self.vectorization(.{ lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, Type.bool);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, Type.bool);
const op_lhs = try v.prepare(self, lhs);
const op_rhs = try v.prepare(self, rhs);
const opcode: Opcode = switch (pred) {
.l_eq => .OpLogicalEqual,
.l_ne => .OpLogicalNotEqual,
.i_eq => .OpIEqual,
.i_ne => .OpINotEqual,
.s_lt => .OpSLessThan,
.s_gt => .OpSGreaterThan,
.s_le => .OpSLessThanEqual,
.s_ge => .OpSGreaterThanEqual,
.u_lt => .OpULessThan,
.u_gt => .OpUGreaterThan,
.u_le => .OpULessThanEqual,
.u_ge => .OpUGreaterThanEqual,
.f_oeq => .OpFOrdEqual,
.f_une => .OpFUnordNotEqual,
.f_olt => .OpFOrdLessThan,
.f_ole => .OpFOrdLessThanEqual,
.f_ogt => .OpFOrdGreaterThan,
.f_oge => .OpFOrdGreaterThanEqual,
};
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_lhs.at(i));
self.func.body.writeOperand(IdResult, op_rhs.at(i));
}
return v.finalize(result_ty, results);
}
const UnaryOp = enum {
l_not,
bit_not,
i_neg,
f_neg,
i_abs,
f_abs,
clz,
ctz,
floor,
ceil,
trunc,
round,
sqrt,
sin,
cos,
tan,
exp,
exp2,
log,
log2,
log10,
};
fn buildUnary(self: *NavGen, op: UnaryOp, operand: Temporary) !Temporary {
const target = self.getTarget();
const v = blk: {
const v = self.vectorization(.{operand});
break :blk switch (op) {
// TODO: These instructions don't seem to be working
// properly for LLVM-based backends on OpenCL for 8- and
// 16-component vectors.
.i_abs => if (target.os.tag == .opencl and v.components() >= 8) v.unroll() else v,
else => v,
};
};
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, operand.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, operand.ty);
const op_operand = try v.prepare(self, operand);
if (switch (op) {
.l_not => .OpLogicalNot,
.bit_not => .OpNot,
.i_neg => .OpSNegate,
.f_neg => .OpFNegate,
else => @as(?Opcode, null),
}) |opcode| {
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_operand.at(i));
}
} else {
const set = try self.importExtendedSet();
const extinst: u32 = switch (target.os.tag) {
.opencl => switch (op) {
.i_abs => 141, // s_abs
.f_abs => 23, // fabs
.clz => 151, // clz
.ctz => 152, // ctz
.floor => 25, // floor
.ceil => 12, // ceil
.trunc => 66, // trunc
.round => 55, // round
.sqrt => 61, // sqrt
.sin => 57, // sin
.cos => 14, // cos
.tan => 62, // tan
.exp => 19, // exp
.exp2 => 20, // exp2
.log => 37, // log
.log2 => 38, // log2
.log10 => 39, // log10
else => unreachable,
},
// Note: We'll need to check these for floating point accuracy
// Vulkan does not put tight requirements on these, for correction
// we might want to emulate them at some point.
.vulkan => switch (op) {
.i_abs => 5, // SAbs
.f_abs => 4, // FAbs
.clz => unreachable, // TODO
.ctz => unreachable, // TODO
.floor => 8, // Floor
.ceil => 9, // Ceil
.trunc => 3, // Trunc
.round => 1, // Round
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
=> unreachable, // TODO
else => unreachable,
},
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = extinst },
.id_ref_4 = &.{op_operand.at(i)},
});
}
}
return v.finalize(result_ty, results);
}
const BinaryOp = enum {
i_add,
f_add,
i_sub,
f_sub,
i_mul,
f_mul,
s_div,
u_div,
f_div,
s_rem,
f_rem,
s_mod,
u_mod,
f_mod,
srl,
sra,
sll,
bit_and,
bit_or,
bit_xor,
f_max,
s_max,
u_max,
f_min,
s_min,
u_min,
l_and,
l_or,
};
fn buildBinary(self: *NavGen, op: BinaryOp, lhs: Temporary, rhs: Temporary) !Temporary {
const target = self.getTarget();
const v = self.vectorization(.{ lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, lhs.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, lhs.ty);
const op_lhs = try v.prepare(self, lhs);
const op_rhs = try v.prepare(self, rhs);
if (switch (op) {
.i_add => .OpIAdd,
.f_add => .OpFAdd,
.i_sub => .OpISub,
.f_sub => .OpFSub,
.i_mul => .OpIMul,
.f_mul => .OpFMul,
.s_div => .OpSDiv,
.u_div => .OpUDiv,
.f_div => .OpFDiv,
.s_rem => .OpSRem,
.f_rem => .OpFRem,
.s_mod => .OpSMod,
.u_mod => .OpUMod,
.f_mod => .OpFMod,
.srl => .OpShiftRightLogical,
.sra => .OpShiftRightArithmetic,
.sll => .OpShiftLeftLogical,
.bit_and => .OpBitwiseAnd,
.bit_or => .OpBitwiseOr,
.bit_xor => .OpBitwiseXor,
.l_and => .OpLogicalAnd,
.l_or => .OpLogicalOr,
else => @as(?Opcode, null),
}) |opcode| {
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_lhs.at(i));
self.func.body.writeOperand(IdResult, op_rhs.at(i));
}
} else {
const set = try self.importExtendedSet();
// TODO: Put these numbers in some definition
const extinst: u32 = switch (target.os.tag) {
.opencl => switch (op) {
.f_max => 27, // fmax
.s_max => 156, // s_max
.u_max => 157, // u_max
.f_min => 28, // fmin
.s_min => 158, // s_min
.u_min => 159, // u_min
else => unreachable,
},
.vulkan => switch (op) {
.f_max => 40, // FMax
.s_max => 42, // SMax
.u_max => 41, // UMax
.f_min => 37, // FMin
.s_min => 39, // SMin
.u_min => 38, // UMin
else => unreachable,
},
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = extinst },
.id_ref_4 = &.{ op_lhs.at(i), op_rhs.at(i) },
});
}
}
return v.finalize(result_ty, results);
}
/// This function builds an extended multiplication, either OpSMulExtended or OpUMulExtended on Vulkan,
/// or OpIMul and s_mul_hi or u_mul_hi on OpenCL.
fn buildWideMul(
self: *NavGen,
op: enum {
s_mul_extended,
u_mul_extended,
},
lhs: Temporary,
rhs: Temporary,
) !struct { Temporary, Temporary } {
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const ip = &zcu.intern_pool;
const v = lhs.vectorization(self).unify(rhs.vectorization(self));
const ops = v.operations();
const arith_op_ty = try v.operationType(self, lhs.ty);
const arith_op_ty_id = try self.resolveType(arith_op_ty, .direct);
const lhs_op = try v.prepare(self, lhs);
const rhs_op = try v.prepare(self, rhs);
const value_results = self.spv.allocIds(ops);
const overflow_results = self.spv.allocIds(ops);
switch (target.os.tag) {
.opencl => {
// Currently, SPIRV-LLVM-Translator based backends cannot deal with OpSMulExtended and
// OpUMulExtended. For these we will use the OpenCL s_mul_hi to compute the high-order bits
// instead.
const set = try self.importExtendedSet();
const overflow_inst: u32 = switch (op) {
.s_mul_extended => 160, // s_mul_hi
.u_mul_extended => 203, // u_mul_hi
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpIMul, .{
.id_result_type = arith_op_ty_id,
.id_result = value_results.at(i),
.operand_1 = lhs_op.at(i),
.operand_2 = rhs_op.at(i),
});
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = arith_op_ty_id,
.id_result = overflow_results.at(i),
.set = set,
.instruction = .{ .inst = overflow_inst },
.id_ref_4 = &.{ lhs_op.at(i), rhs_op.at(i) },
});
}
},
.vulkan => {
// Operations return a struct{T, T}
// where T is maybe vectorized.
const op_result_ty: Type = .fromInterned(try ip.getTupleType(zcu.gpa, pt.tid, .{
.types = &.{ arith_op_ty.toIntern(), arith_op_ty.toIntern() },
.values = &.{ .none, .none },
}));
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const opcode: Opcode = switch (op) {
.s_mul_extended => .OpSMulExtended,
.u_mul_extended => .OpUMulExtended,
};
for (0..ops) |i| {
const op_result = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, op_result);
self.func.body.writeOperand(IdResult, lhs_op.at(i));
self.func.body.writeOperand(IdResult, rhs_op.at(i));
// The above operation returns a struct. We might want to expand
// Temporary to deal with the fact that these are structs eventually,
// but for now, take the struct apart and return two separate vectors.
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = arith_op_ty_id,
.id_result = value_results.at(i),
.composite = op_result,
.indexes = &.{0},
});
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = arith_op_ty_id,
.id_result = overflow_results.at(i),
.composite = op_result,
.indexes = &.{1},
});
}
},
else => unreachable,
}
const result_ty = try v.resultType(self, lhs.ty);
return .{
v.finalize(result_ty, value_results),
v.finalize(result_ty, overflow_results),
};
}
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
/// points. The test executor will then be able to invoke these to run the tests.
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
/// (anyerror!void has the same layout as anyerror).
/// Each test declaration generates a function like.
/// %anyerror = OpTypeInt 0 16
/// %p_invocation_globals_struct_ty = ...
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
/// %K = OpTypeFunction %void %p_invocation_globals_struct_ty %p_anyerror
///
/// %test = OpFunction %void %K
/// %p_invocation_globals = OpFunctionParameter p_invocation_globals_struct_ty
/// %p_err = OpFunctionParameter %p_anyerror
/// %lbl = OpLabel
/// %result = OpFunctionCall %anyerror %func %p_invocation_globals
/// OpStore %p_err %result
/// OpFunctionEnd
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
/// the name of an error in the text executor.
fn generateTestEntryPoint(self: *NavGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
const anyerror_ty_id = try self.resolveType(Type.anyerror, .direct);
const ptr_anyerror_ty = try self.pt.ptrType(.{
.child = Type.anyerror.toIntern(),
.flags = .{ .address_space = .global },
});
const ptr_anyerror_ty_id = try self.resolveType(ptr_anyerror_ty, .direct);
const spv_decl_index = try self.spv.allocDecl(.func);
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
// for some reason we don't need to decorate the push constant here...
try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index});
const section = &self.spv.sections.functions;
const target = self.getTarget();
const p_error_id = self.spv.allocId();
switch (target.os.tag) {
.opencl => {
const kernel_proto_ty_id = try self.functionType(Type.void, &.{ptr_anyerror_ty});
try section.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = kernel_id,
.function_control = .{},
.function_type = kernel_proto_ty_id,
});
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = ptr_anyerror_ty_id,
.id_result = p_error_id,
});
try section.emit(self.spv.gpa, .OpLabel, .{
.id_result = self.spv.allocId(),
});
},
.vulkan => {
const ptr_ptr_anyerror_ty_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
.id_result = ptr_ptr_anyerror_ty_id,
.storage_class = .PushConstant,
.type = ptr_anyerror_ty_id,
});
if (self.object.error_push_constant == null) {
const spv_err_decl_index = try self.spv.allocDecl(.global);
try self.spv.declareDeclDeps(spv_err_decl_index, &.{});
const push_constant_struct_ty_id = self.spv.allocId();
try self.spv.structType(push_constant_struct_ty_id, &.{ptr_anyerror_ty_id}, &.{"error_out_ptr"});
try self.spv.decorate(push_constant_struct_ty_id, .Block);
try self.spv.decorateMember(push_constant_struct_ty_id, 0, .{ .Offset = .{ .byte_offset = 0 } });
const ptr_push_constant_struct_ty_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
.id_result = ptr_push_constant_struct_ty_id,
.storage_class = .PushConstant,
.type = push_constant_struct_ty_id,
});
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_push_constant_struct_ty_id,
.id_result = self.spv.declPtr(spv_err_decl_index).result_id,
.storage_class = .PushConstant,
});
self.object.error_push_constant = .{
.push_constant_ptr = spv_err_decl_index,
};
}
try self.spv.sections.execution_modes.emit(self.spv.gpa, .OpExecutionMode, .{
.entry_point = kernel_id,
.mode = .{ .LocalSize = .{
.x_size = 1,
.y_size = 1,
.z_size = 1,
} },
});
const kernel_proto_ty_id = try self.functionType(Type.void, &.{});
try section.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = kernel_id,
.function_control = .{},
.function_type = kernel_proto_ty_id,
});
try section.emit(self.spv.gpa, .OpLabel, .{
.id_result = self.spv.allocId(),
});
const spv_err_decl_index = self.object.error_push_constant.?.push_constant_ptr;
const push_constant_id = self.spv.declPtr(spv_err_decl_index).result_id;
const zero_id = try self.constInt(Type.u32, 0, .direct);
// We cannot use OpInBoundsAccessChain to dereference cross-storage class, so we have to use
// a load.
const tmp = self.spv.allocId();
try section.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
.id_result_type = ptr_ptr_anyerror_ty_id,
.id_result = tmp,
.base = push_constant_id,
.indexes = &.{zero_id},
});
try section.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = ptr_anyerror_ty_id,
.id_result = p_error_id,
.pointer = tmp,
});
},
else => unreachable,
}
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
const error_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = anyerror_ty_id,
.id_result = error_id,
.function = test_id,
});
// Note: Convert to direct not required.
try section.emit(self.spv.gpa, .OpStore, .{
.pointer = p_error_id,
.object = error_id,
.memory_access = .{
.Aligned = .{ .literal_integer = @sizeOf(u16) },
},
});
try section.emit(self.spv.gpa, .OpReturn, {});
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
// Just generate a quick other name because the intel runtime crashes when the entry-
// point name is the same as a different OpName.
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
defer self.gpa.free(test_name);
const execution_mode: spec.ExecutionModel = switch (target.os.tag) {
.vulkan => .GLCompute,
.opencl => .Kernel,
else => unreachable,
};
try self.spv.declareEntryPoint(spv_decl_index, test_name, execution_mode);
}
fn genNav(self: *NavGen, do_codegen: bool) !void {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const nav = ip.getNav(self.owner_nav);
const val = zcu.navValue(self.owner_nav);
const ty = val.typeOf(zcu);
if (!do_codegen and !ty.hasRuntimeBits(zcu)) {
return;
}
const spv_decl_index = try self.object.resolveNav(zcu, self.owner_nav);
const result_id = self.spv.declPtr(spv_decl_index).result_id;
switch (self.spv.declPtr(spv_decl_index).kind) {
.func => {
const fn_info = zcu.typeToFunc(ty).?;
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const prototype_ty_id = try self.resolveType(ty, .direct);
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = return_ty_id,
.id_result = result_id,
.function_type = prototype_ty_id,
// Note: the backend will never be asked to generate an inline function
// (this is handled in sema), so we don't need to set function_control here.
.function_control = .{},
});
comptime assert(zig_call_abi_ver == 3);
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
const param_type_id = try self.resolveType(param_ty, .direct);
const arg_result_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = param_type_id,
.id_result = arg_result_id,
});
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocId();
// The root block of a function declaration should appear before OpVariable instructions,
// so it is generated into the function's prologue.
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const main_body = self.air.getMainBody();
switch (self.control_flow) {
.structured => {
_ = try self.genStructuredBody(.selection, main_body);
// We always expect paths to here to end, but we still need the block
// to act as a dummy merge block.
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
},
.unstructured => {
try self.genBody(main_body);
},
}
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
// Append the actual code into the functions section.
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
// Temporarily generate a test kernel declaration if this is a test function.
if (self.pt.zcu.test_functions.contains(self.owner_nav)) {
try self.generateTestEntryPoint(nav.fqn.toSlice(ip), spv_decl_index);
}
},
.global => {
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
.func => unreachable,
.variable => |variable| Value.fromInterned(variable.init),
.@"extern" => null,
else => val,
};
assert(maybe_init_val == null); // TODO
const storage_class = self.spvStorageClass(nav.getAddrspace());
assert(storage_class != .Generic); // These should be instance globals
const ptr_ty_id = try self.ptrType(ty, storage_class);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.storage_class = storage_class,
});
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
try self.spv.declareDeclDeps(spv_decl_index, &.{});
},
.invocation_global => {
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
.func => unreachable,
.variable => |variable| Value.fromInterned(variable.init),
.@"extern" => null,
else => val,
};
try self.spv.declareDeclDeps(spv_decl_index, &.{});
const ptr_ty_id = try self.ptrType(ty, .Function);
if (maybe_init_val) |init_val| {
// TODO: Combine with resolveAnonDecl?
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = initializer_id,
.function_control = .{},
.function_type = initializer_proto_ty_id,
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(ty, init_val, .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = result_id,
.object = val_id,
});
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(initializer_id, "initializer of {}", .{nav.fqn.fmt(ip)});
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{initializer_id},
});
} else {
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{},
});
}
},
}
}
fn intFromBool(self: *NavGen, value: Temporary) !Temporary {
return try self.intFromBool2(value, Type.u1);
}
fn intFromBool2(self: *NavGen, value: Temporary, result_ty: Type) !Temporary {
const zero_id = try self.constInt(result_ty, 0, .direct);
const one_id = try self.constInt(result_ty, 1, .direct);
return try self.buildSelect(
value,
Temporary.init(result_ty, one_id),
Temporary.init(result_ty, zero_id),
);
}
/// Convert representation from indirect (in memory) to direct (in 'register')
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
fn convertToDirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
.bool => {
const false_id = try self.constBool(false, .indirect);
// The operation below requires inputs in direct representation, but the operand
// is actually in indirect representation.
// Cheekily swap out the type to the direct equivalent of the indirect type here, they have the
// same representation when converted to SPIR-V.
const operand_ty = try self.zigScalarOrVectorTypeLike(Type.u1, ty);
// Note: We can guarantee that these are the same ID due to the SPIR-V Module's `vector_types` cache!
assert(try self.resolveType(operand_ty, .direct) == try self.resolveType(ty, .indirect));
const result = try self.buildCmp(
.i_ne,
Temporary.init(operand_ty, operand_id),
Temporary.init(Type.u1, false_id),
);
return try result.materialize(self);
},
else => return operand_id,
}
}
/// Convert representation from direct (in 'register) to direct (in memory)
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
fn convertToIndirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
.bool => {
const result = try self.intFromBool(Temporary.init(ty, operand_id));
return try result.materialize(self);
},
else => return operand_id,
}
}
fn extractField(self: *NavGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
const result_ty_id = try self.resolveType(result_ty, .indirect);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.composite = object,
.indexes = &indexes,
});
// Convert bools; direct structs have their field types as indirect values.
return try self.convertToDirect(result_ty, result_id);
}
fn extractVectorComponent(self: *NavGen, result_ty: Type, vector_id: IdRef, field: u32) !IdRef {
// Whether this is an OpTypeVector or OpTypeArray, we need to emit the same instruction regardless.
const result_ty_id = try self.resolveType(result_ty, .direct);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.composite = vector_id,
.indexes = &indexes,
});
// Vector components are already stored in direct representation.
return result_id;
}
const MemoryOptions = struct {
is_volatile: bool = false,
};
fn load(self: *NavGen, value_ty: Type, ptr_id: IdRef, options: MemoryOptions) !IdRef {
const indirect_value_ty_id = try self.resolveType(value_ty, .indirect);
const result_id = self.spv.allocId();
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = indirect_value_ty_id,
.id_result = result_id,
.pointer = ptr_id,
.memory_access = access,
});
return try self.convertToDirect(value_ty, result_id);
}
fn store(self: *NavGen, value_ty: Type, ptr_id: IdRef, value_id: IdRef, options: MemoryOptions) !void {
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = indirect_value_id,
.memory_access = access,
});
}
fn genBody(self: *NavGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const ip = &zcu.intern_pool;
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
return;
const air_tags = self.air.instructions.items(.tag);
const maybe_result_id: ?IdRef = switch (air_tags[@intFromEnum(inst)]) {
// zig fmt: off
.add, .add_wrap, .add_optimized => try self.airArithOp(inst, .f_add, .i_add, .i_add),
.sub, .sub_wrap, .sub_optimized => try self.airArithOp(inst, .f_sub, .i_sub, .i_sub),
.mul, .mul_wrap, .mul_optimized => try self.airArithOp(inst, .f_mul, .i_mul, .i_mul),
.sqrt => try self.airUnOpSimple(inst, .sqrt),
.sin => try self.airUnOpSimple(inst, .sin),
.cos => try self.airUnOpSimple(inst, .cos),
.tan => try self.airUnOpSimple(inst, .tan),
.exp => try self.airUnOpSimple(inst, .exp),
.exp2 => try self.airUnOpSimple(inst, .exp2),
.log => try self.airUnOpSimple(inst, .log),
.log2 => try self.airUnOpSimple(inst, .log2),
.log10 => try self.airUnOpSimple(inst, .log10),
.abs => try self.airAbs(inst),
.floor => try self.airUnOpSimple(inst, .floor),
.ceil => try self.airUnOpSimple(inst, .ceil),
.round => try self.airUnOpSimple(inst, .round),
.trunc_float => try self.airUnOpSimple(inst, .trunc),
.neg, .neg_optimized => try self.airUnOpSimple(inst, .f_neg),
.div_float, .div_float_optimized => try self.airArithOp(inst, .f_div, .s_div, .u_div),
.div_floor, .div_floor_optimized => try self.airDivFloor(inst),
.div_trunc, .div_trunc_optimized => try self.airDivTrunc(inst),
.rem, .rem_optimized => try self.airArithOp(inst, .f_rem, .s_rem, .u_mod),
.mod, .mod_optimized => try self.airArithOp(inst, .f_mod, .s_mod, .u_mod),
.add_with_overflow => try self.airAddSubOverflow(inst, .i_add, .u_lt, .s_lt),
.sub_with_overflow => try self.airAddSubOverflow(inst, .i_sub, .u_gt, .s_gt),
.mul_with_overflow => try self.airMulOverflow(inst),
.shl_with_overflow => try self.airShlOverflow(inst),
.mul_add => try self.airMulAdd(inst),
.ctz => try self.airClzCtz(inst, .ctz),
.clz => try self.airClzCtz(inst, .clz),
.select => try self.airSelect(inst),
.splat => try self.airSplat(inst),
.reduce, .reduce_optimized => try self.airReduce(inst),
.shuffle => try self.airShuffle(inst),
.ptr_add => try self.airPtrAdd(inst),
.ptr_sub => try self.airPtrSub(inst),
.bit_and => try self.airBinOpSimple(inst, .bit_and),
.bit_or => try self.airBinOpSimple(inst, .bit_or),
.xor => try self.airBinOpSimple(inst, .bit_xor),
.bool_and => try self.airBinOpSimple(inst, .l_and),
.bool_or => try self.airBinOpSimple(inst, .l_or),
.shl, .shl_exact => try self.airShift(inst, .sll, .sll),
.shr, .shr_exact => try self.airShift(inst, .srl, .sra),
.min => try self.airMinMax(inst, .min),
.max => try self.airMinMax(inst, .max),
.bitcast => try self.airBitCast(inst),
.intcast, .trunc => try self.airIntCast(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.float_from_int => try self.airFloatFromInt(inst),
.int_from_float => try self.airIntFromFloat(inst),
.int_from_bool => try self.airIntFromBool(inst),
.fpext, .fptrunc => try self.airFloatCast(inst),
.not => try self.airNot(inst),
.array_to_slice => try self.airArrayToSlice(inst),
.slice => try self.airSlice(inst),
.aggregate_init => try self.airAggregateInit(inst),
.memcpy => return self.airMemcpy(inst),
.slice_ptr => try self.airSliceField(inst, 0),
.slice_len => try self.airSliceField(inst, 1),
.slice_elem_ptr => try self.airSliceElemPtr(inst),
.slice_elem_val => try self.airSliceElemVal(inst),
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
.ptr_elem_val => try self.airPtrElemVal(inst),
.array_elem_val => try self.airArrayElemVal(inst),
.vector_store_elem => return self.airVectorStoreElem(inst),
.set_union_tag => return self.airSetUnionTag(inst),
.get_union_tag => try self.airGetUnionTag(inst),
.union_init => try self.airUnionInit(inst),
.struct_field_val => try self.airStructFieldVal(inst),
.field_parent_ptr => try self.airFieldParentPtr(inst),
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_neq => try self.airCmp(inst, .neq),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_vector => try self.airVectorCmp(inst),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
// TODO: We probably need to have a special implementation of this for the C abi.
.ret_ptr => try self.airAlloc(inst),
.block => try self.airBlock(inst),
.load => try self.airLoad(inst),
.store, .store_safe => return self.airStore(inst),
.br => return self.airBr(inst),
// For now just ignore this instruction. This effectively falls back on the old implementation,
// this doesn't change anything for us.
.repeat => return,
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.ret_safe => return self.airRet(inst), // TODO
.ret_load => return self.airRetLoad(inst),
.@"try" => try self.airTry(inst),
.switch_br => return self.airSwitchBr(inst),
.unreach, .trap => return self.airUnreach(),
.dbg_stmt => return self.airDbgStmt(inst),
.dbg_inline_block => try self.airDbgInlineBlock(inst),
.dbg_var_ptr, .dbg_var_val, .dbg_arg_inline => return self.airDbgVar(inst),
.unwrap_errunion_err => try self.airErrUnionErr(inst),
.unwrap_errunion_payload => try self.airErrUnionPayload(inst),
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
.is_null => try self.airIsNull(inst, false, .is_null),
.is_non_null => try self.airIsNull(inst, false, .is_non_null),
.is_null_ptr => try self.airIsNull(inst, true, .is_null),
.is_non_null_ptr => try self.airIsNull(inst, true, .is_non_null),
.is_err => try self.airIsErr(inst, .is_err),
.is_non_err => try self.airIsErr(inst, .is_non_err),
.optional_payload => try self.airUnwrapOptional(inst),
.optional_payload_ptr => try self.airUnwrapOptionalPtr(inst),
.wrap_optional => try self.airWrapOptional(inst),
.assembly => try self.airAssembly(inst),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
.work_item_id => try self.airWorkItemId(inst),
.work_group_size => try self.airWorkGroupSize(inst),
.work_group_id => try self.airWorkGroupId(inst),
// zig fmt: on
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
};
const result_id = maybe_result_id orelse return;
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
}
fn airBinOpSimple(self: *NavGen, inst: Air.Inst.Index, op: BinaryOp) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.buildBinary(op, lhs, rhs);
return try result.materialize(self);
}
fn airShift(self: *NavGen, inst: Air.Inst.Index, unsigned: BinaryOp, signed: BinaryOp) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const base = try self.temporary(bin_op.lhs);
const shift = try self.temporary(bin_op.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
switch (info.class) {
.composite_integer => return self.todo("shift ops for composite integers", .{}),
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
// Note: The sign may differ here between the shift and the base type, in case
// of an arithmetic right shift. SPIR-V still expects the same type,
// so in that case we have to cast convert to signed.
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
const shifted = switch (info.signedness) {
.unsigned => try self.buildBinary(unsigned, base, casted_shift),
.signed => try self.buildBinary(signed, base, casted_shift),
};
const result = try self.normalize(shifted, info);
return try result.materialize(self);
}
const MinMax = enum { min, max };
fn airMinMax(self: *NavGen, inst: Air.Inst.Index, op: MinMax) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.minMax(lhs, rhs, op);
return try result.materialize(self);
}
fn minMax(self: *NavGen, lhs: Temporary, rhs: Temporary, op: MinMax) !Temporary {
const info = self.arithmeticTypeInfo(lhs.ty);
const binop: BinaryOp = switch (info.class) {
.float => switch (op) {
.min => .f_min,
.max => .f_max,
},
.integer, .strange_integer => switch (info.signedness) {
.signed => switch (op) {
.min => .s_min,
.max => .s_max,
},
.unsigned => switch (op) {
.min => .u_min,
.max => .u_max,
},
},
.composite_integer => unreachable, // TODO
.bool => unreachable,
};
return try self.buildBinary(binop, lhs, rhs);
}
/// This function normalizes values to a canonical representation
/// after some arithmetic operation. This mostly consists of wrapping
/// behavior for strange integers:
/// - Unsigned integers are bitwise masked with a mask that only passes
/// the valid bits through.
/// - Signed integers are also sign extended if they are negative.
/// All other values are returned unmodified (this makes strange integer
/// wrapping easier to use in generic operations).
fn normalize(self: *NavGen, value: Temporary, info: ArithmeticTypeInfo) !Temporary {
const zcu = self.pt.zcu;
const ty = value.ty;
switch (info.class) {
.integer, .bool, .float => return value,
.composite_integer => unreachable, // TODO
.strange_integer => switch (info.signedness) {
.unsigned => {
const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
const mask_id = try self.constInt(ty.scalarType(zcu), mask_value, .direct);
return try self.buildBinary(.bit_and, value, Temporary.init(ty.scalarType(zcu), mask_id));
},
.signed => {
// Shift left and right so that we can copy the sight bit that way.
const shift_amt_id = try self.constInt(ty.scalarType(zcu), info.backing_bits - info.bits, .direct);
const shift_amt = Temporary.init(ty.scalarType(zcu), shift_amt_id);
const left = try self.buildBinary(.sll, value, shift_amt);
return try self.buildBinary(.sra, left, shift_amt);
},
},
}
}
fn airDivFloor(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {
switch (info.signedness) {
.unsigned => {
const result = try self.buildBinary(.u_div, lhs, rhs);
return try result.materialize(self);
},
.signed => {},
}
// For signed integers:
// (a / b) - (a % b != 0 && a < 0 != b < 0);
// There shouldn't be any overflow issues.
const div = try self.buildBinary(.s_div, lhs, rhs);
const rem = try self.buildBinary(.s_rem, lhs, rhs);
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const rem_is_not_zero = try self.buildCmp(.i_ne, rem, zero);
const result_negative = try self.buildCmp(
.l_ne,
try self.buildCmp(.s_lt, lhs, zero),
try self.buildCmp(.s_lt, rhs, zero),
);
const rem_is_not_zero_and_result_is_negative = try self.buildBinary(
.l_and,
rem_is_not_zero,
result_negative,
);
const result = try self.buildBinary(
.i_sub,
div,
try self.intFromBool2(rem_is_not_zero_and_result_is_negative, div.ty),
);
return try result.materialize(self);
},
.float => {
const div = try self.buildBinary(.f_div, lhs, rhs);
const result = try self.buildUnary(.floor, div);
return try result.materialize(self);
},
.bool => unreachable,
}
}
fn airDivTrunc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => switch (info.signedness) {
.unsigned => {
const result = try self.buildBinary(.u_div, lhs, rhs);
return try result.materialize(self);
},
.signed => {
const result = try self.buildBinary(.s_div, lhs, rhs);
return try result.materialize(self);
},
},
.float => {
const div = try self.buildBinary(.f_div, lhs, rhs);
const result = try self.buildUnary(.trunc, div);
return try result.materialize(self);
},
.bool => unreachable,
}
}
fn airUnOpSimple(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.temporary(un_op);
const result = try self.buildUnary(op, operand);
return try result.materialize(self);
}
fn airArithOp(
self: *NavGen,
inst: Air.Inst.Index,
comptime fop: BinaryOp,
comptime sop: BinaryOp,
comptime uop: BinaryOp,
) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
const result = switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => switch (info.signedness) {
.signed => try self.buildBinary(sop, lhs, rhs),
.unsigned => try self.buildBinary(uop, lhs, rhs),
},
.float => try self.buildBinary(fop, lhs, rhs),
.bool => unreachable,
};
return try result.materialize(self);
}
fn airAbs(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
// Note: operand_ty may be signed, while ty is always unsigned!
const result_ty = self.typeOfIndex(inst);
const result = try self.abs(result_ty, operand);
return try result.materialize(self);
}
fn abs(self: *NavGen, result_ty: Type, value: Temporary) !Temporary {
const target = self.getTarget();
const operand_info = self.arithmeticTypeInfo(value.ty);
switch (operand_info.class) {
.float => return try self.buildUnary(.f_abs, value),
.integer, .strange_integer => {
const abs_value = try self.buildUnary(.i_abs, value);
// TODO: We may need to bitcast the result to a uint
// depending on the result type. Do that when
// bitCast is implemented for vectors.
// This is only relevant for Vulkan
assert(target.os.tag != .vulkan); // TODO
return try self.normalize(abs_value, self.arithmeticTypeInfo(result_ty));
},
.composite_integer => unreachable, // TODO
.bool => unreachable,
}
}
fn airAddSubOverflow(
self: *NavGen,
inst: Air.Inst.Index,
comptime add: BinaryOp,
comptime ucmp: CmpPredicate,
comptime scmp: CmpPredicate,
) !?IdRef {
// Note: OpIAddCarry and OpISubBorrow are not really useful here: For unsigned numbers,
// there is in both cases only one extra operation required. For signed operations,
// the overflow bit is set then going from 0x80.. to 0x00.., but this doesn't actually
// normally set a carry bit. So the SPIR-V overflow operations are not particularly
// useful here.
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.temporary(extra.lhs);
const rhs = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {},
.float, .bool => unreachable,
}
const sum = try self.buildBinary(add, lhs, rhs);
const result = try self.normalize(sum, info);
const overflowed = switch (info.signedness) {
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
// For subtraction the conditions need to be swapped.
.unsigned => try self.buildCmp(ucmp, result, lhs),
// For addition, overflow happened if:
// - rhs is negative and value > lhs
// - rhs is positive and value < lhs
// This can be shortened to:
// (rhs < 0 and value > lhs) or (rhs >= 0 and value <= lhs)
// = (rhs < 0) == (value > lhs)
// = (rhs < 0) == (lhs < value)
// Note that signed overflow is also wrapping in spir-v.
// For subtraction, overflow happened if:
// - rhs is negative and value < lhs
// - rhs is positive and value > lhs
// This can be shortened to:
// (rhs < 0 and value < lhs) or (rhs >= 0 and value >= lhs)
// = (rhs < 0) == (value < lhs)
// = (rhs < 0) == (lhs > value)
.signed => blk: {
const zero = Temporary.init(rhs.ty, try self.constInt(rhs.ty, 0, .direct));
const rhs_lt_zero = try self.buildCmp(.s_lt, rhs, zero);
const result_gt_lhs = try self.buildCmp(scmp, lhs, result);
break :blk try self.buildCmp(.l_eq, rhs_lt_zero, result_gt_lhs);
},
};
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airMulOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const target = self.getTarget();
const pt = self.pt;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.temporary(extra.lhs);
const rhs = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {},
.float, .bool => unreachable,
}
// There are 3 cases which we have to deal with:
// - If info.bits < 32 / 2, we will upcast to 32 and check the higher bits
// - If info.bits > 32 / 2, we have to use extended multiplication
// - Additionally, if info.bits != 32, we'll have to check the high bits
// of the result too.
const largest_int_bits: u16 = if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32;
// If non-null, the number of bits that the multiplication should be performed in. If
// null, we have to use wide multiplication.
const maybe_op_ty_bits: ?u16 = switch (info.bits) {
0 => unreachable,
1...16 => 32,
17...32 => if (largest_int_bits > 32) 64 else null, // Upcast if we can.
33...64 => null, // Always use wide multiplication.
else => unreachable, // TODO: Composite integers
};
const result, const overflowed = switch (info.signedness) {
.unsigned => blk: {
if (maybe_op_ty_bits) |op_ty_bits| {
const op_ty = try pt.intType(.unsigned, op_ty_bits);
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
const result = try self.normalize(low_bits, info);
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits, .direct));
const overflow = try self.buildBinary(.srl, full_result, shift);
// Directly check if its zero in the op_ty without converting first.
const zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0, .direct));
const overflowed = try self.buildCmp(.i_ne, zero, overflow);
break :blk .{ result, overflowed };
}
const low_bits, const high_bits = try self.buildWideMul(.u_mul_extended, lhs, rhs);
// Truncate the result, if required.
const result = try self.normalize(low_bits, info);
// Overflow happened if the high-bits of the result are non-zero OR if the
// high bits of the low word of the result (those outside the range of the
// int) are nonzero.
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const high_overflowed = try self.buildCmp(.i_ne, zero, high_bits);
// If no overflow bits in low_bits, no extra work needs to be done.
if (info.backing_bits == info.bits) {
break :blk .{ result, high_overflowed };
}
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits, .direct));
const low_overflow = try self.buildBinary(.srl, low_bits, shift);
const low_overflowed = try self.buildCmp(.i_ne, zero, low_overflow);
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
break :blk .{ result, overflowed };
},
.signed => blk: {
// - lhs >= 0, rhxs >= 0: expect positive; overflow should be 0
// - lhs == 0 : expect positive; overflow should be 0
// - rhs == 0: expect positive; overflow should be 0
// - lhs > 0, rhs < 0: expect negative; overflow should be -1
// - lhs < 0, rhs > 0: expect negative; overflow should be -1
// - lhs <= 0, rhs <= 0: expect positive; overflow should be 0
// ------
// overflow should be -1 when
// (lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0)
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const lhs_negative = try self.buildCmp(.s_lt, lhs, zero);
const rhs_negative = try self.buildCmp(.s_lt, rhs, zero);
const lhs_positive = try self.buildCmp(.s_gt, lhs, zero);
const rhs_positive = try self.buildCmp(.s_gt, rhs, zero);
// Set to `true` if we expect -1.
const expected_overflow_bit = try self.buildBinary(
.l_or,
try self.buildBinary(.l_and, lhs_positive, rhs_negative),
try self.buildBinary(.l_and, lhs_negative, rhs_positive),
);
if (maybe_op_ty_bits) |op_ty_bits| {
const op_ty = try pt.intType(.signed, op_ty_bits);
// Assume normalized; sign bit is set. We want a sign extend.
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
// Truncate to the result type.
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
const result = try self.normalize(low_bits, info);
// Now, we need to check the overflow bits AND the sign
// bit for the expected overflow bits.
// To do that, shift out everything bit the sign bit and
// then check what remains.
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits - 1, .direct));
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
// for negative cases.
const overflow = try self.buildBinary(.sra, full_result, shift);
const long_all_set = Temporary.init(full_result.ty, try self.constInt(full_result.ty, -1, .direct));
const long_zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0, .direct));
const mask = try self.buildSelect(expected_overflow_bit, long_all_set, long_zero);
const overflowed = try self.buildCmp(.i_ne, mask, overflow);
break :blk .{ result, overflowed };
}
const low_bits, const high_bits = try self.buildWideMul(.s_mul_extended, lhs, rhs);
// Truncate result if required.
const result = try self.normalize(low_bits, info);
const all_set = Temporary.init(lhs.ty, try self.constInt(lhs.ty, -1, .direct));
const mask = try self.buildSelect(expected_overflow_bit, all_set, zero);
// Like with unsigned, overflow happened if high_bits are not the ones we expect,
// and we also need to check some ones from the low bits.
const high_overflowed = try self.buildCmp(.i_ne, mask, high_bits);
// If no overflow bits in low_bits, no extra work needs to be done.
// Careful, we still have to check the sign bit, so this branch
// only goes for i33 and such.
if (info.backing_bits == info.bits + 1) {
break :blk .{ result, high_overflowed };
}
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits - 1, .direct));
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
// for negative cases.
const low_overflow = try self.buildBinary(.sra, low_bits, shift);
const low_overflowed = try self.buildCmp(.i_ne, mask, low_overflow);
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
break :blk .{ result, overflowed };
},
};
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airShlOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const base = try self.temporary(extra.lhs);
const shift = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(base.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
const left = try self.buildBinary(.sll, base, casted_shift);
const result = try self.normalize(left, info);
const right = switch (info.signedness) {
.unsigned => try self.buildBinary(.srl, result, casted_shift),
.signed => try self.buildBinary(.sra, result, casted_shift),
};
const overflowed = try self.buildCmp(.i_ne, base, right);
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airMulAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const a = try self.temporary(extra.lhs);
const b = try self.temporary(extra.rhs);
const c = try self.temporary(pl_op.operand);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
assert(info.class == .float); // .mul_add is only emitted for floats
const result = try self.buildFma(a, b, c);
return try result.materialize(self);
}
fn airClzCtz(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const zcu = self.pt.zcu;
const target = self.getTarget();
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
const scalar_result_ty = self.typeOfIndex(inst).scalarType(zcu);
const info = self.arithmeticTypeInfo(operand.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
switch (target.os.tag) {
.vulkan => unreachable, // TODO
else => {},
}
const count = try self.buildUnary(op, operand);
// Result of OpenCL ctz/clz returns operand.ty, and we want result_ty.
// result_ty is always large enough to hold the result, so we might have to down
// cast it.
const result = try self.buildIntConvert(scalar_result_ty, count);
return try result.materialize(self);
}
fn airSelect(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const pred = try self.temporary(pl_op.operand);
const a = try self.temporary(extra.lhs);
const b = try self.temporary(extra.rhs);
const result = try self.buildSelect(pred, a, b);
return try result.materialize(self);
}
fn airSplat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.constructVectorSplat(result_ty, operand_id);
}
fn airReduce(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const reduce = self.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const operand = try self.resolve(reduce.operand);
const operand_ty = self.typeOf(reduce.operand);
const scalar_ty = operand_ty.scalarType(zcu);
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
const info = self.arithmeticTypeInfo(operand_ty);
const len = operand_ty.vectorLen(zcu);
const first = try self.extractVectorComponent(scalar_ty, operand, 0);
switch (reduce.operation) {
.Min, .Max => |op| {
var result = Temporary.init(scalar_ty, first);
const cmp_op: MinMax = switch (op) {
.Max => .max,
.Min => .min,
else => unreachable,
};
for (1..len) |i| {
const lhs = result;
const rhs_id = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
const rhs = Temporary.init(scalar_ty, rhs_id);
result = try self.minMax(lhs, rhs, cmp_op);
}
return try result.materialize(self);
},
else => {},
}
var result_id = first;
const opcode: Opcode = switch (info.class) {
.bool => switch (reduce.operation) {
.And => .OpLogicalAnd,
.Or => .OpLogicalOr,
.Xor => .OpLogicalNotEqual,
else => unreachable,
},
.strange_integer, .integer => switch (reduce.operation) {
.And => .OpBitwiseAnd,
.Or => .OpBitwiseOr,
.Xor => .OpBitwiseXor,
.Add => .OpIAdd,
.Mul => .OpIMul,
else => unreachable,
},
.float => switch (reduce.operation) {
.Add => .OpFAdd,
.Mul => .OpFMul,
else => unreachable,
},
.composite_integer => unreachable, // TODO
};
for (1..len) |i| {
const lhs = result_id;
const rhs = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
result_id = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, scalar_ty_id);
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdResultType, lhs);
self.func.body.writeOperand(spec.IdResultType, rhs);
}
return result_id;
}
fn airShuffle(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try self.resolve(extra.a);
const b = try self.resolve(extra.b);
const mask = Value.fromInterned(extra.mask);
// Note: number of components in the result, a, and b may differ.
const result_ty = self.typeOfIndex(inst);
const a_ty = self.typeOf(extra.a);
const b_ty = self.typeOf(extra.b);
const scalar_ty = result_ty.scalarType(zcu);
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
// If all of the types are SPIR-V vectors, we can use OpVectorShuffle.
if (self.isSpvVector(result_ty) and self.isSpvVector(a_ty) and self.isSpvVector(b_ty)) {
// The SPIR-V shuffle instruction is similar to the Air instruction, except that the elements are
// numbered consecutively instead of using negatives.
const components = try self.gpa.alloc(Word, result_ty.vectorLen(zcu));
defer self.gpa.free(components);
const a_len = a_ty.vectorLen(zcu);
for (components, 0..) |*component, i| {
const elem = try mask.elemValue(pt, i);
if (elem.isUndef(zcu)) {
// This is explicitly valid for OpVectorShuffle, it indicates undefined.
component.* = 0xFFFF_FFFF;
continue;
}
const index = elem.toSignedInt(zcu);
if (index >= 0) {
component.* = @intCast(index);
} else {
component.* = @intCast(~index + a_len);
}
}
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpVectorShuffle, .{
.id_result_type = try self.resolveType(result_ty, .direct),
.id_result = result_id,
.vector_1 = a,
.vector_2 = b,
.components = components,
});
return result_id;
}
// Fall back to manually extracting and inserting components.
const components = try self.gpa.alloc(IdRef, result_ty.vectorLen(zcu));
defer self.gpa.free(components);
for (components, 0..) |*id, i| {
const elem = try mask.elemValue(pt, i);
if (elem.isUndef(zcu)) {
id.* = try self.spv.constUndef(scalar_ty_id);
continue;
}
const index = elem.toSignedInt(zcu);
if (index >= 0) {
id.* = try self.extractVectorComponent(scalar_ty, a, @intCast(index));
} else {
id.* = try self.extractVectorComponent(scalar_ty, b, @intCast(~index));
}
}
return try self.constructVector(result_ty, components);
}
fn indicesToIds(self: *NavGen, indices: []const u32) ![]IdRef {
const ids = try self.gpa.alloc(IdRef, indices.len);
errdefer self.gpa.free(ids);
for (indices, ids) |index, *id| {
id.* = try self.constInt(Type.u32, index, .direct);
}
return ids;
}
fn accessChainId(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
indices: []const IdRef,
) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.base = base,
.indexes = indices,
});
return result_id;
}
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
/// difference lies in whether the resulting type of the first dereference will be the
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
/// is the latter and PtrAccessChain is the former.
fn accessChain(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
return try self.accessChainId(result_ty_id, base, ids);
}
fn ptrAccessChain(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
element: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
const result_id = self.spv.allocId();
const target = self.getTarget();
switch (target.os.tag) {
.opencl => try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.base = base,
.element = element,
.indexes = ids,
}),
.vulkan => try self.func.body.emit(self.spv.gpa, .OpPtrAccessChain, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.base = base,
.element = element,
.indexes = ids,
}),
else => unreachable,
}
return result_id;
}
fn ptrAdd(self: *NavGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
const result_ty_id = try self.resolveType(result_ty, .direct);
switch (ptr_ty.ptrSize(zcu)) {
.one => {
// Pointer to array
// TODO: Is this correct?
return try self.accessChainId(result_ty_id, ptr_id, &.{offset_id});
},
.c, .many => {
return try self.ptrAccessChain(result_ty_id, ptr_id, offset_id, &.{});
},
.slice => {
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
return try self.ptrAccessChain(result_ty_id, slice_ptr_id, offset_id, &.{});
},
}
}
fn airPtrAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
}
fn airPtrSub(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const offset_ty = self.typeOf(bin_op.rhs);
const offset_ty_id = try self.resolveType(offset_ty, .direct);
const result_ty = self.typeOfIndex(inst);
const negative_offset_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
.id_result_type = offset_ty_id,
.id_result = negative_offset_id,
.operand = offset_id,
});
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
}
fn cmp(
self: *NavGen,
op: std.math.CompareOperator,
lhs: Temporary,
rhs: Temporary,
) !Temporary {
const pt = self.pt;
const zcu = pt.zcu;
const scalar_ty = lhs.ty.scalarType(zcu);
const is_vector = lhs.ty.isVector(zcu);
switch (scalar_ty.zigTypeTag(zcu)) {
.int, .bool, .float => {},
.@"enum" => {
assert(!is_vector);
const ty = lhs.ty.intTagType(zcu);
return try self.cmp(op, lhs.pun(ty), rhs.pun(ty));
},
.error_set => {
assert(!is_vector);
return try self.cmp(op, lhs.pun(Type.u16), rhs.pun(Type.u16));
},
.pointer => {
assert(!is_vector);
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
// OpConvertPtrToU...
const usize_ty_id = try self.resolveType(Type.usize, .direct);
const lhs_int_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = lhs_int_id,
.pointer = try lhs.materialize(self),
});
const rhs_int_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = rhs_int_id,
.pointer = try rhs.materialize(self),
});
const lhs_int = Temporary.init(Type.usize, lhs_int_id);
const rhs_int = Temporary.init(Type.usize, rhs_int_id);
return try self.cmp(op, lhs_int, rhs_int);
},
.optional => {
assert(!is_vector);
const ty = lhs.ty;
const payload_ty = ty.optionalChild(zcu);
if (ty.optionalReprIsPayload(zcu)) {
assert(payload_ty.hasRuntimeBitsIgnoreComptime(zcu));
assert(!payload_ty.isSlice(zcu));
return try self.cmp(op, lhs.pun(payload_ty), rhs.pun(payload_ty));
}
const lhs_id = try lhs.materialize(self);
const rhs_id = try rhs.materialize(self);
const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, lhs_id, 1)
else
try self.convertToDirect(Type.bool, lhs_id);
const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, rhs_id, 1)
else
try self.convertToDirect(Type.bool, rhs_id);
const lhs_valid = Temporary.init(Type.bool, lhs_valid_id);
const rhs_valid = Temporary.init(Type.bool, rhs_valid_id);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return try self.cmp(op, lhs_valid, rhs_valid);
}
// a = lhs_valid
// b = rhs_valid
// c = lhs_pl == rhs_pl
//
// For op == .eq we have:
// a == b && a -> c
// = a == b && (!a || c)
//
// For op == .neq we have
// a == b && a -> c
// = !(a == b && a -> c)
// = a != b || !(a -> c
// = a != b || !(!a || c)
// = a != b || a && !c
const lhs_pl_id = try self.extractField(payload_ty, lhs_id, 0);
const rhs_pl_id = try self.extractField(payload_ty, rhs_id, 0);
const lhs_pl = Temporary.init(payload_ty, lhs_pl_id);
const rhs_pl = Temporary.init(payload_ty, rhs_pl_id);
return switch (op) {
.eq => try self.buildBinary(
.l_and,
try self.cmp(.eq, lhs_valid, rhs_valid),
try self.buildBinary(
.l_or,
try self.buildUnary(.l_not, lhs_valid),
try self.cmp(.eq, lhs_pl, rhs_pl),
),
),
.neq => try self.buildBinary(
.l_or,
try self.cmp(.neq, lhs_valid, rhs_valid),
try self.buildBinary(
.l_and,
lhs_valid,
try self.cmp(.neq, lhs_pl, rhs_pl),
),
),
else => unreachable,
};
},
else => unreachable,
}
const info = self.arithmeticTypeInfo(scalar_ty);
const pred: CmpPredicate = switch (info.class) {
.composite_integer => unreachable, // TODO
.float => switch (op) {
.eq => .f_oeq,
.neq => .f_une,
.lt => .f_olt,
.lte => .f_ole,
.gt => .f_ogt,
.gte => .f_oge,
},
.bool => switch (op) {
.eq => .l_eq,
.neq => .l_ne,
else => unreachable,
},
.integer, .strange_integer => switch (info.signedness) {
.signed => switch (op) {
.eq => .i_eq,
.neq => .i_ne,
.lt => .s_lt,
.lte => .s_le,
.gt => .s_gt,
.gte => .s_ge,
},
.unsigned => switch (op) {
.eq => .i_eq,
.neq => .i_ne,
.lt => .u_lt,
.lte => .u_le,
.gt => .u_gt,
.gte => .u_ge,
},
},
};
return try self.buildCmp(pred, lhs, rhs);
}
fn airCmp(
self: *NavGen,
inst: Air.Inst.Index,
comptime op: std.math.CompareOperator,
) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.cmp(op, lhs, rhs);
return try result.materialize(self);
}
fn airVectorCmp(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const vec_cmp = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
const lhs = try self.temporary(vec_cmp.lhs);
const rhs = try self.temporary(vec_cmp.rhs);
const op = vec_cmp.compareOperator();
const result = try self.cmp(op, lhs, rhs);
return try result.materialize(self);
}
/// Bitcast one type to another. Note: both types, input, output are expected in **direct** representation.
fn bitCast(
self: *NavGen,
dst_ty: Type,
src_ty: Type,
src_id: IdRef,
) !IdRef {
const zcu = self.pt.zcu;
const src_ty_id = try self.resolveType(src_ty, .direct);
const dst_ty_id = try self.resolveType(dst_ty, .direct);
const result_id = blk: {
if (src_ty_id == dst_ty_id) {
break :blk src_id;
}
// TODO: Some more cases are missing here
// See fn bitCast in llvm.zig
if (src_ty.zigTypeTag(zcu) == .int and dst_ty.isPtrAtRuntime(zcu)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = dst_ty_id,
.id_result = result_id,
.integer_value = src_id,
});
break :blk result_id;
}
// We can only use OpBitcast for specific conversions: between numerical types, and
// between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
// otherwise use a temporary and perform a pointer cast.
const can_bitcast = (src_ty.isNumeric(zcu) and dst_ty.isNumeric(zcu)) or (src_ty.isPtrAtRuntime(zcu) and dst_ty.isPtrAtRuntime(zcu));
if (can_bitcast) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = dst_ty_id,
.id_result = result_id,
.operand = src_id,
});
break :blk result_id;
}
const dst_ptr_ty_id = try self.ptrType(dst_ty, .Function);
const tmp_id = try self.alloc(src_ty, .{ .storage_class = .Function });
try self.store(src_ty, tmp_id, src_id, .{});
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = dst_ptr_ty_id,
.id_result = casted_ptr_id,
.operand = tmp_id,
});
break :blk try self.load(dst_ty, casted_ptr_id, .{});
};
// Because strange integers use sign-extended representation, we may need to normalize
// the result here.
// TODO: This detail could cause stuff like @as(*const i1, @ptrCast(&@as(u1, 1))) to break
// should we change the representation of strange integers?
if (dst_ty.zigTypeTag(zcu) == .int) {
const info = self.arithmeticTypeInfo(dst_ty);
const result = try self.normalize(Temporary.init(dst_ty, result_id), info);
return try result.materialize(self);
}
return result_id;
}
fn airBitCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.bitCast(result_ty, operand_ty, operand_id);
}
fn airIntCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src = try self.temporary(ty_op.operand);
const dst_ty = self.typeOfIndex(inst);
const src_info = self.arithmeticTypeInfo(src.ty);
const dst_info = self.arithmeticTypeInfo(dst_ty);
if (src_info.backing_bits == dst_info.backing_bits) {
return try src.materialize(self);
}
const converted = try self.buildIntConvert(dst_ty, src);
// Make sure to normalize the result if shrinking.
// Because strange ints are sign extended in their backing
// type, we don't need to normalize when growing the type. The
// representation is already the same.
const result = if (dst_info.bits < src_info.bits)
try self.normalize(converted, dst_info)
else
converted;
return try result.materialize(self);
}
fn intFromPtr(self: *NavGen, operand_id: IdRef) !IdRef {
const result_type_id = try self.resolveType(Type.usize, .direct);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = result_type_id,
.id_result = result_id,
.pointer = operand_id,
});
return result_id;
}
fn airIntFromPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
return try self.intFromPtr(operand_id);
}
fn airFloatFromInt(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.floatFromInt(result_ty, operand_ty, operand_id);
}
fn floatFromInt(self: *NavGen, result_ty: Type, operand_ty: Type, operand_id: IdRef) !IdRef {
const operand_info = self.arithmeticTypeInfo(operand_ty);
const result_id = self.spv.allocId();
const result_ty_id = try self.resolveType(result_ty, .direct);
switch (operand_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.signed_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.unsigned_value = operand_id,
}),
}
return result_id;
}
fn airIntFromFloat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.intFromFloat(result_ty, operand_id);
}
fn intFromFloat(self: *NavGen, result_ty: Type, operand_id: IdRef) !IdRef {
const result_info = self.arithmeticTypeInfo(result_ty);
const result_ty_id = try self.resolveType(result_ty, .direct);
const result_id = self.spv.allocId();
switch (result_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
}
return result_id;
}
fn airIntFromBool(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.temporary(un_op);
const result = try self.intFromBool(operand);
return try result.materialize(self);
}
fn airFloatCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveType(dest_ty, .direct);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpFConvert, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
});
return result_id;
}
fn airNot(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
const result = switch (info.class) {
.bool => try self.buildUnary(.l_not, operand),
.float => unreachable,
.composite_integer => unreachable, // TODO
.strange_integer, .integer => blk: {
const complement = try self.buildUnary(.bit_not, operand);
break :blk try self.normalize(complement, info);
},
};
return try result.materialize(self);
}
fn airArrayToSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const array_ptr_ty = self.typeOf(ty_op.operand);
const array_ty = array_ptr_ty.childType(zcu);
const slice_ty = self.typeOfIndex(inst);
const elem_ptr_ty = slice_ty.slicePtrFieldType(zcu);
const elem_ptr_ty_id = try self.resolveType(elem_ptr_ty, .direct);
const array_ptr_id = try self.resolve(ty_op.operand);
const len_id = try self.constInt(Type.usize, array_ty.arrayLen(zcu), .direct);
const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(zcu))
// Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
try self.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
else
// Convert the pointer-to-array to a pointer to the first element.
try self.accessChain(elem_ptr_ty_id, array_ptr_id, &.{0});
return try self.constructStruct(
slice_ty,
&.{ elem_ptr_ty, Type.usize },
&.{ elem_ptr_id, len_id },
);
}
fn airSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const len_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const slice_ty = self.typeOfIndex(inst);
// Note: Types should not need to be converted to direct, these types
// dont need to be converted.
return try self.constructStruct(
slice_ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
}
fn airAggregateInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const result_ty = self.typeOfIndex(inst);
const len: usize = @intCast(result_ty.arrayLen(zcu));
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
switch (result_ty.zigTypeTag(zcu)) {
.@"struct" => {
if (zcu.typeToPackedStruct(result_ty)) |struct_type| {
_ = struct_type;
unreachable; // TODO
}
const types = try self.gpa.alloc(Type, elements.len);
defer self.gpa.free(types);
const constituents = try self.gpa.alloc(IdRef, elements.len);
defer self.gpa.free(constituents);
var index: usize = 0;
switch (ip.indexToKey(result_ty.toIntern())) {
.tuple_type => |tuple| {
for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
assert(Type.fromInterned(field_ty).hasRuntimeBits(zcu));
const id = try self.resolve(element);
types[index] = Type.fromInterned(field_ty);
constituents[index] = try self.convertToIndirect(Type.fromInterned(field_ty), id);
index += 1;
}
},
.struct_type => {
const struct_type = ip.loadStructType(result_ty.toIntern());
var it = struct_type.iterateRuntimeOrder(ip);
for (elements, 0..) |element, i| {
const field_index = it.next().?;
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
assert(field_ty.hasRuntimeBitsIgnoreComptime(zcu));
const id = try self.resolve(element);
types[index] = field_ty;
constituents[index] = try self.convertToIndirect(field_ty, id);
index += 1;
}
},
else => unreachable,
}
return try self.constructStruct(
result_ty,
types[0..index],
constituents[0..index],
);
},
.vector => {
const n_elems = result_ty.vectorLen(zcu);
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
elem_ids[i] = try self.resolve(element);
}
return try self.constructVector(result_ty, elem_ids);
},
.array => {
const array_info = result_ty.arrayInfo(zcu);
const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(zcu));
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
const id = try self.resolve(element);
elem_ids[i] = try self.convertToIndirect(array_info.elem_type, id);
}
if (array_info.sentinel) |sentinel_val| {
elem_ids[n_elems - 1] = try self.constant(array_info.elem_type, sentinel_val, .indirect);
}
return try self.constructArray(result_ty, elem_ids);
},
else => unreachable,
}
}
fn sliceOrArrayLen(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
switch (ty.ptrSize(zcu)) {
.slice => return self.extractField(Type.usize, operand_id, 1),
.one => {
const array_ty = ty.childType(zcu);
const elem_ty = array_ty.childType(zcu);
const abi_size = elem_ty.abiSize(zcu);
const size = array_ty.arrayLenIncludingSentinel(zcu) * abi_size;
return try self.constInt(Type.usize, size, .direct);
},
.many, .c => unreachable,
}
}
fn sliceOrArrayPtr(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
const zcu = self.pt.zcu;
if (ty.isSlice(zcu)) {
const ptr_ty = ty.slicePtrFieldType(zcu);
return self.extractField(ptr_ty, operand_id, 0);
}
return operand_id;
}
fn airMemcpy(self: *NavGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dest_slice = try self.resolve(bin_op.lhs);
const src_slice = try self.resolve(bin_op.rhs);
const dest_ty = self.typeOf(bin_op.lhs);
const src_ty = self.typeOf(bin_op.rhs);
const dest_ptr = try self.sliceOrArrayPtr(dest_slice, dest_ty);
const src_ptr = try self.sliceOrArrayPtr(src_slice, src_ty);
const len = try self.sliceOrArrayLen(dest_slice, dest_ty);
try self.func.body.emit(self.spv.gpa, .OpCopyMemorySized, .{
.target = dest_ptr,
.source = src_ptr,
.size = len,
});
}
fn airSliceField(self: *NavGen, inst: Air.Inst.Index, field: u32) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const field_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
return try self.extractField(field_ty, operand_id, field);
}
fn airSliceElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOfIndex(inst);
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
return try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
}
fn airSliceElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = slice_ty.slicePtrFieldType(zcu);
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
const elem_ptr = try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
return try self.load(slice_ty.childType(zcu), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(zcu) });
}
fn ptrElemPtr(self: *NavGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
// Construct new pointer type for the resulting pointer
const elem_ty = ptr_ty.elemType2(zcu); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_id = try self.ptrType(elem_ty, self.spvStorageClass(ptr_ty.ptrAddressSpace(zcu)));
if (ptr_ty.isSinglePointer(zcu)) {
// Pointer-to-array. In this case, the resulting pointer is not of the same type
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
return try self.accessChainId(elem_ptr_ty_id, ptr_id, &.{index_id});
} else {
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
return try self.ptrAccessChain(elem_ptr_ty_id, ptr_id, index_id, &.{});
}
}
fn airPtrElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const src_ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = src_ptr_ty.childType(zcu);
const ptr_id = try self.resolve(bin_op.lhs);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const dst_ptr_ty = self.typeOfIndex(inst);
return try self.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
}
const index_id = try self.resolve(bin_op.rhs);
return try self.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
}
fn airArrayElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const array_ty = self.typeOf(bin_op.lhs);
const elem_ty = array_ty.childType(zcu);
const array_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
if (self.isSpvVector(array_ty)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpVectorExtractDynamic, .{
.id_result_type = try self.resolveType(elem_ty, .direct),
.id_result = result_id,
.vector = array_id,
.index = index_id,
});
return result_id;
}
// SPIR-V doesn't have an array indexing function for some damn reason.
// For now, just generate a temporary and use that.
// TODO: This backend probably also should use isByRef from llvm...
const is_vector = array_ty.isVector(zcu);
const elem_repr: Repr = if (is_vector) .direct else .indirect;
const ptr_array_ty_id = try self.ptrType2(array_ty, .Function, .direct);
const ptr_elem_ty_id = try self.ptrType2(elem_ty, .Function, elem_repr);
const tmp_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_array_ty_id,
.id_result = tmp_id,
.storage_class = .Function,
});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = tmp_id,
.object = array_id,
});
const elem_ptr_id = try self.accessChainId(ptr_elem_ty_id, tmp_id, &.{index_id});
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = try self.resolveType(elem_ty, elem_repr),
.id_result = result_id,
.pointer = elem_ptr_id,
});
if (is_vector) {
// Result is already in direct representation
return result_id;
}
// This is an array type; the elements are stored in indirect representation.
// We have to convert the type to direct.
return try self.convertToDirect(elem_ty, result_id);
}
fn airPtrElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = self.typeOfIndex(inst);
const ptr_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
return try self.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airVectorStoreElem(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const data = self.air.instructions.items(.data)[@intFromEnum(inst)].vector_store_elem;
const extra = self.air.extraData(Air.Bin, data.payload).data;
const vector_ptr_ty = self.typeOf(data.vector_ptr);
const vector_ty = vector_ptr_ty.childType(zcu);
const scalar_ty = vector_ty.scalarType(zcu);
const storage_class = self.spvStorageClass(vector_ptr_ty.ptrAddressSpace(zcu));
const scalar_ptr_ty_id = try self.ptrType(scalar_ty, storage_class);
const vector_ptr = try self.resolve(data.vector_ptr);
const index = try self.resolve(extra.lhs);
const operand = try self.resolve(extra.rhs);
const elem_ptr_id = try self.accessChainId(scalar_ptr_ty_id, vector_ptr, &.{index});
try self.store(scalar_ty, elem_ptr_id, operand, .{
.is_volatile = vector_ptr_ty.isVolatilePtr(zcu),
});
}
fn airSetUnionTag(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const un_ptr_ty = self.typeOf(bin_op.lhs);
const un_ty = un_ptr_ty.childType(zcu);
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return;
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
const tag_ptr_ty_id = try self.ptrType(tag_ty, self.spvStorageClass(un_ptr_ty.ptrAddressSpace(zcu)));
const union_ptr_id = try self.resolve(bin_op.lhs);
const new_tag_id = try self.resolve(bin_op.rhs);
if (!layout.has_payload) {
try self.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
} else {
const ptr_id = try self.accessChain(tag_ptr_ty_id, union_ptr_id, &.{layout.tag_index});
try self.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
}
}
fn airGetUnionTag(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const un_ty = self.typeOf(ty_op.operand);
const zcu = self.pt.zcu;
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return null;
const union_handle = try self.resolve(ty_op.operand);
if (!layout.has_payload) return union_handle;
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
return try self.extractField(tag_ty, union_handle, layout.tag_index);
}
fn unionInit(
self: *NavGen,
ty: Type,
active_field: u32,
payload: ?IdRef,
) !IdRef {
// To initialize a union, generate a temporary variable with the
// union type, then get the field pointer and pointer-cast it to the
// right type to store it. Finally load the entire union.
// Note: The result here is not cached, because it generates runtime code.
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const union_ty = zcu.typeToUnion(ty).?;
const tag_ty = Type.fromInterned(union_ty.enum_tag_ty);
if (union_ty.flagsUnordered(ip).layout == .@"packed") {
unreachable; // TODO
}
const layout = self.unionLayout(ty);
const tag_int = if (layout.tag_size != 0) blk: {
const tag_val = try pt.enumValueFieldIndex(tag_ty, active_field);
const tag_int_val = try tag_val.intFromEnum(tag_ty, pt);
break :blk tag_int_val.toUnsignedInt(zcu);
} else 0;
if (!layout.has_payload) {
return try self.constInt(tag_ty, tag_int, .direct);
}
const tmp_id = try self.alloc(ty, .{ .storage_class = .Function });
if (layout.tag_size != 0) {
const tag_ptr_ty_id = try self.ptrType(tag_ty, .Function);
const ptr_id = try self.accessChain(tag_ptr_ty_id, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
const tag_id = try self.constInt(tag_ty, tag_int, .direct);
try self.store(tag_ty, ptr_id, tag_id, .{});
}
const payload_ty = Type.fromInterned(union_ty.field_types.get(ip)[active_field]);
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_id = try self.ptrType(payload_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = active_pl_ptr_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
try self.store(payload_ty, active_pl_ptr_id, payload.?, .{});
} else {
assert(payload == null);
}
// Just leave the padding fields uninitialized...
// TODO: Or should we initialize them with undef explicitly?
return try self.load(ty, tmp_id, .{});
}
fn airUnionInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
const ty = self.typeOfIndex(inst);
const union_obj = zcu.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.resolve(extra.init)
else
null;
return try self.unionInit(ty, extra.field_index, payload);
}
fn airStructFieldVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
const object_ty = self.typeOf(struct_field.struct_operand);
const object_id = try self.resolve(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = object_ty.fieldType(field_index, zcu);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
switch (object_ty.zigTypeTag(zcu)) {
.@"struct" => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => return try self.extractField(field_ty, object_id, field_index),
},
.@"union" => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
// Store, ptr-elem-ptr, pointer-cast, load
const layout = self.unionLayout(object_ty);
assert(layout.has_payload);
const tmp_id = try self.alloc(object_ty, .{ .storage_class = .Function });
try self.store(object_ty, tmp_id, object_id, .{});
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_id = try self.ptrType(field_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = active_pl_ptr_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return try self.load(field_ty, active_pl_ptr_id, .{});
},
},
else => unreachable,
}
}
fn airFieldParentPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const parent_ty = ty_pl.ty.toType().childType(zcu);
const result_ty_id = try self.resolveType(ty_pl.ty.toType(), .indirect);
const field_ptr = try self.resolve(extra.field_ptr);
const field_ptr_int = try self.intFromPtr(field_ptr);
const field_offset = parent_ty.structFieldOffset(extra.field_index, zcu);
const base_ptr_int = base_ptr_int: {
if (field_offset == 0) break :base_ptr_int field_ptr_int;
const field_offset_id = try self.constInt(Type.usize, field_offset, .direct);
const field_ptr_tmp = Temporary.init(Type.usize, field_ptr_int);
const field_offset_tmp = Temporary.init(Type.usize, field_offset_id);
const result = try self.buildBinary(.i_sub, field_ptr_tmp, field_offset_tmp);
break :base_ptr_int try result.materialize(self);
};
const base_ptr = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = result_ty_id,
.id_result = base_ptr,
.integer_value = base_ptr_int,
});
return base_ptr;
}
fn structFieldPtr(
self: *NavGen,
result_ptr_ty: Type,
object_ptr_ty: Type,
object_ptr: IdRef,
field_index: u32,
) !IdRef {
const result_ty_id = try self.resolveType(result_ptr_ty, .direct);
const zcu = self.pt.zcu;
const object_ty = object_ptr_ty.childType(zcu);
switch (object_ty.zigTypeTag(zcu)) {
.pointer => {
assert(object_ty.isSlice(zcu));
return self.accessChain(result_ty_id, object_ptr, &.{field_index});
},
.@"struct" => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
return try self.accessChain(result_ty_id, object_ptr, &.{field_index});
},
},
.@"union" => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
const layout = self.unionLayout(object_ty);
if (!layout.has_payload) {
// Asked to get a pointer to a zero-sized field. Just lower this
// to undefined, there is no reason to make it be a valid pointer.
return try self.spv.constUndef(result_ty_id);
}
const storage_class = self.spvStorageClass(object_ptr_ty.ptrAddressSpace(zcu));
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, storage_class);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, object_ptr, &.{layout.payload_index});
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = result_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return active_pl_ptr_id;
},
},
else => unreachable,
}
}
fn airStructFieldPtrIndex(self: *NavGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const struct_ptr = try self.resolve(ty_op.operand);
const struct_ptr_ty = self.typeOf(ty_op.operand);
const result_ptr_ty = self.typeOfIndex(inst);
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
}
const AllocOptions = struct {
initializer: ?IdRef = null,
/// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
/// In either case, the local is allocated in the `.Function` storage class, and optionally
/// cast back to `.Generic`.
storage_class: StorageClass = .Generic,
};
// Allocate a function-local variable, with possible initializer.
// This function returns a pointer to a variable of type `ty`,
// which is in the Generic address space. The variable is actually
// placed in the Function address space.
fn alloc(
self: *NavGen,
ty: Type,
options: AllocOptions,
) !IdRef {
const ptr_fn_ty_id = try self.ptrType(ty, .Function);
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
// directly generate them into func.prologue instead of the body.
const var_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_fn_ty_id,
.id_result = var_id,
.storage_class = .Function,
.initializer = options.initializer,
});
const target = self.getTarget();
if (target.os.tag == .vulkan) {
return var_id;
}
switch (options.storage_class) {
.Generic => {
const ptr_gn_ty_id = try self.ptrType(ty, .Generic);
// Convert to a generic pointer
return self.castToGeneric(ptr_gn_ty_id, var_id);
},
.Function => return var_id,
else => unreachable,
}
}
fn airAlloc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ptr_ty = self.typeOfIndex(inst);
assert(ptr_ty.ptrAddressSpace(zcu) == .generic);
const child_ty = ptr_ty.childType(zcu);
return try self.alloc(child_ty, .{});
}
fn airArg(self: *NavGen) IdRef {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
/// Given a slice of incoming block connections, returns the block-id of the next
/// block to jump to. This function emits instructions, so it should be emitted
/// inside the merge block of the block.
/// This function should only be called with structured control flow generation.
fn structuredNextBlock(self: *NavGen, incoming: []const ControlFlow.Structured.Block.Incoming) !IdRef {
assert(self.control_flow == .structured);
const result_id = self.spv.allocId();
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent...
self.func.body.writeOperand(spec.IdResultType, block_id_ty_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (incoming) |incoming_block| {
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label });
}
return result_id;
}
/// Jumps to the block with the target block-id. This function must only be called when
/// terminating a body, there should be no instructions after it.
/// This function should only be called with structured control flow generation.
fn structuredBreak(self: *NavGen, target_block: IdRef) !void {
assert(self.control_flow == .structured);
const sblock = self.control_flow.structured.block_stack.getLast();
const merge_block = switch (sblock.*) {
.selection => |*merge| blk: {
const merge_label = self.spv.allocId();
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = target_block,
},
.merge_block = merge_label,
});
break :blk merge_label;
},
// Loop blocks do not end in a break. Not through a direct break,
// and also not through another instruction like cond_br or unreachable (these
// situations are replaced by `cond_br` in sema, or there is a `block` instruction
// placed around them).
.loop => unreachable,
};
try self.func.body.emitBranch(self.spv.gpa, merge_block);
}
/// Generate a body in a way that exits the body using only structured constructs.
/// Returns the block-id of the next block to jump to. After this function, a jump
/// should still be emitted to the block that should follow this structured body.
/// This function should only be called with structured control flow generation.
fn genStructuredBody(
self: *NavGen,
/// This parameter defines the method that this structured body is exited with.
block_merge_type: union(enum) {
/// Using selection; early exits from this body are surrounded with
/// if() statements.
selection,
/// Using loops; loops can be early exited by jumping to the merge block at
/// any time.
loop: struct {
merge_label: IdRef,
continue_label: IdRef,
},
},
body: []const Air.Inst.Index,
) !IdRef {
assert(self.control_flow == .structured);
var sblock: ControlFlow.Structured.Block = switch (block_merge_type) {
.loop => |merge| .{ .loop = .{
.merge_block = merge.merge_label,
} },
.selection => .{ .selection = .{} },
};
defer sblock.deinit(self.gpa);
{
try self.control_flow.structured.block_stack.append(self.gpa, &sblock);
defer _ = self.control_flow.structured.block_stack.pop();
try self.genBody(body);
}
switch (sblock) {
.selection => |merge| {
// Now generate the merge block for all merges that
// still need to be performed.
const merge_stack = merge.merge_stack.items;
// If no merges on the stack, this block didn't generate any jumps (all paths
// ended with a return or an unreachable). In that case, we don't need to do
// any merging.
if (merge_stack.len == 0) {
// We still need to return a value of a next block to jump to.
// For example, if we have code like
// if (x) {
// if (y) return else return;
// } else {}
// then we still need the outer to have an OpSelectionMerge and consequently
// a phi node. In that case we can just return bogus, since we know that its
// path will never be taken.
// Make sure that we are still in a block when exiting the function.
// TODO: Can we get rid of that?
try self.beginSpvBlock(self.spv.allocId());
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
return try self.spv.constUndef(block_id_ty_id);
}
// The top-most merge actually only has a single source, the
// final jump of the block, or the merge block of a sub-block, cond_br,
// or loop. Therefore we just need to generate a block with a jump to the
// next merge block.
try self.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block);
// Now generate a merge ladder for the remaining merges in the stack.
var incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = merge_stack[merge_stack.len - 1].incoming.next_block,
};
var i = merge_stack.len - 1;
while (i > 0) {
i -= 1;
const step = merge_stack[i];
try self.func.body.emitBranch(self.spv.gpa, step.merge_block);
try self.beginSpvBlock(step.merge_block);
const next_block = try self.structuredNextBlock(&.{ incoming, step.incoming });
incoming = .{
.src_label = step.merge_block,
.next_block = next_block,
};
}
return incoming.next_block;
},
.loop => |merge| {
// Close the loop by jumping to the continue label
try self.func.body.emitBranch(self.spv.gpa, block_merge_type.loop.continue_label);
// For blocks we must simple merge all the incoming blocks to get the next block.
try self.beginSpvBlock(merge.merge_block);
return try self.structuredNextBlock(merge.merges.items);
},
}
}
fn airBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
}
fn lowerBlock(self: *NavGen, inst: Air.Inst.Index, body: []const Air.Inst.Index) !?IdRef {
// In AIR, a block doesn't really define an entry point like a block, but
// more like a scope that breaks can jump out of and "return" a value from.
// This cannot be directly modelled in SPIR-V, so in a block instruction,
// we're going to split up the current block by first generating the code
// of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const pt = self.pt;
const zcu = pt.zcu;
const ty = self.typeOfIndex(inst);
const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu);
const cf = switch (self.control_flow) {
.structured => |*cf| cf,
.unstructured => |*cf| {
var block = ControlFlow.Unstructured.Block{};
defer block.incoming_blocks.deinit(self.gpa);
// 4 chosen as arbitrary initial capacity.
try block.incoming_blocks.ensureUnusedCapacity(self.gpa, 4);
try cf.blocks.putNoClobber(self.gpa, inst, &block);
defer assert(cf.blocks.remove(inst));
try self.genBody(body);
// Only begin a new block if there were actually any breaks towards it.
if (block.label) |label| {
try self.beginSpvBlock(label);
}
if (!have_block_result)
return null;
assert(block.label != null);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveType(ty, .direct);
try self.func.body.emitRaw(
self.spv.gpa,
.OpPhi,
// result type + result + variable/parent...
2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)),
);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (block.incoming_blocks.items) |incoming| {
self.func.body.writeOperand(
spec.PairIdRefIdRef,
.{ incoming.break_value_id, incoming.src_label },
);
}
return result_id;
},
};
const maybe_block_result_var_id = if (have_block_result) blk: {
const block_result_var_id = try self.alloc(ty, .{ .storage_class = .Function });
try cf.block_results.putNoClobber(self.gpa, inst, block_result_var_id);
break :blk block_result_var_id;
} else null;
defer if (have_block_result) assert(cf.block_results.remove(inst));
const next_block = try self.genStructuredBody(.selection, body);
// When encountering a block instruction, we are always at least in the function's scope,
// so there always has to be another entry.
assert(cf.block_stack.items.len > 0);
// Check if the target of the branch was this current block.
const this_block = try self.constInt(Type.u32, @intFromEnum(inst), .direct);
const jump_to_this_block_id = self.spv.allocId();
const bool_ty_id = try self.resolveType(Type.bool, .direct);
try self.func.body.emit(self.spv.gpa, .OpIEqual, .{
.id_result_type = bool_ty_id,
.id_result = jump_to_this_block_id,
.operand_1 = next_block,
.operand_2 = this_block,
});
const sblock = cf.block_stack.getLast();
if (ty.isNoReturn(zcu)) {
// If this block is noreturn, this instruction is the last of a block,
// and we must simply jump to the block's merge unconditionally.
try self.structuredBreak(next_block);
} else {
switch (sblock.*) {
.selection => |*merge| {
// To jump out of a selection block, push a new entry onto its merge stack and
// generate a conditional branch to there and to the instructions following this block.
const merge_label = self.spv.allocId();
const then_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = then_label,
.false_label = merge_label,
});
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = next_block,
},
.merge_block = merge_label,
});
try self.beginSpvBlock(then_label);
},
.loop => |*merge| {
// To jump out of a loop block, generate a conditional that exits the block
// to the loop merge if the target ID is not the one of this block.
const continue_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = continue_label,
.false_label = merge.merge_block,
});
try merge.merges.append(self.gpa, .{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.beginSpvBlock(continue_label);
},
}
}
if (maybe_block_result_var_id) |block_result_var_id| {
return try self.load(ty, block_result_var_id, .{});
}
return null;
}
fn airBr(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const operand_ty = self.typeOf(br.operand);
switch (self.control_flow) {
.structured => |*cf| {
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
const operand_id = try self.resolve(br.operand);
const block_result_var_id = cf.block_results.get(br.block_inst).?;
try self.store(operand_ty, block_result_var_id, operand_id, .{});
}
const next_block = try self.constInt(Type.u32, @intFromEnum(br.block_inst), .direct);
try self.structuredBreak(next_block);
},
.unstructured => |cf| {
const block = cf.blocks.get(br.block_inst).?;
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
const operand_id = try self.resolve(br.operand);
// current_block_label should not be undefined here, lest there
// is a br or br_void in the function's body.
try block.incoming_blocks.append(self.gpa, .{
.src_label = self.current_block_label,
.break_value_id = operand_id,
});
}
if (block.label == null) {
block.label = self.spv.allocId();
}
try self.func.body.emitBranch(self.spv.gpa, block.label.?);
},
}
}
fn airCondBr(self: *NavGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]);
const condition_id = try self.resolve(pl_op.operand);
const then_label = self.spv.allocId();
const else_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const merge_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
const then_next = try self.genStructuredBody(.selection, then_body);
const then_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = then_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(else_label);
const else_next = try self.genStructuredBody(.selection, else_body);
const else_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = else_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(merge_label);
const next_block = try self.structuredNextBlock(&.{ then_incoming, else_incoming });
try self.structuredBreak(next_block);
},
.unstructured => {
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
try self.genBody(then_body);
try self.beginSpvBlock(else_label);
try self.genBody(else_body);
},
}
}
fn airLoop(self: *NavGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
const body_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const header_label = self.spv.allocId();
const merge_label = self.spv.allocId();
const continue_label = self.spv.allocId();
// The back-edge must point to the loop header, so generate a separate block for the
// loop header so that we don't accidentally include some instructions from there
// in the loop.
try self.func.body.emitBranch(self.spv.gpa, header_label);
try self.beginSpvBlock(header_label);
// Emit loop header and jump to loop body
try self.func.body.emit(self.spv.gpa, .OpLoopMerge, .{
.merge_block = merge_label,
.continue_target = continue_label,
.loop_control = .{},
});
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
const next_block = try self.genStructuredBody(.{ .loop = .{
.merge_label = merge_label,
.continue_label = continue_label,
} }, body);
try self.structuredBreak(next_block);
try self.beginSpvBlock(continue_label);
try self.func.body.emitBranch(self.spv.gpa, header_label);
},
.unstructured => {
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
try self.genBody(body);
try self.func.body.emitBranch(self.spv.gpa, body_label);
},
}
}
fn airLoad(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ptr_ty = self.typeOf(ty_op.operand);
const elem_ty = self.typeOfIndex(inst);
const operand = try self.resolve(ty_op.operand);
if (!ptr_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
return try self.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airStore(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = ptr_ty.childType(zcu);
const ptr = try self.resolve(bin_op.lhs);
const value = try self.resolve(bin_op.rhs);
try self.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airRet(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const operand = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ret_ty = self.typeOf(operand);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const no_err_id = try self.constInt(Type.anyerror, 0, .direct);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const operand_id = try self.resolve(operand);
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
}
fn airRetLoad(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ptr_ty = self.typeOf(un_op);
const ret_ty = ptr_ty.childType(zcu);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const no_err_id = try self.constInt(Type.anyerror, 0, .direct);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const ptr = try self.resolve(un_op);
const value = try self.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
.value = value,
});
}
fn airTry(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const err_union_id = try self.resolve(pl_op.operand);
const extra = self.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const err_union_ty = self.typeOf(pl_op.operand);
const payload_ty = self.typeOfIndex(inst);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
const err_id = if (eu_layout.payload_has_bits)
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
else
err_union_id;
const zero_id = try self.constInt(Type.anyerror, 0, .direct);
const is_err_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = bool_ty_id,
.id_result = is_err_id,
.operand_1 = err_id,
.operand_2 = zero_id,
});
// When there is an error, we must evaluate `body`. Otherwise we must continue
// with the current body.
// Just generate a new block here, then generate a new block inline for the remainder of the body.
const err_block = self.spv.allocId();
const ok_block = self.spv.allocId();
switch (self.control_flow) {
.structured => {
// According to AIR documentation, this block is guaranteed
// to not break and end in a return instruction. Thus,
// for structured control flow, we can just naively use
// the ok block as the merge block here.
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = ok_block,
.selection_control = .{},
});
},
.unstructured => {},
}
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = is_err_id,
.true_label = err_block,
.false_label = ok_block,
});
try self.beginSpvBlock(err_block);
try self.genBody(body);
try self.beginSpvBlock(ok_block);
}
if (!eu_layout.payload_has_bits) {
return null;
}
// Now just extract the payload, if required.
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
}
fn airErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const err_union_ty = self.typeOf(ty_op.operand);
const err_ty_id = try self.resolveType(Type.anyerror, .direct);
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
// No error possible, so just return undefined.
return try self.spv.constUndef(err_ty_id);
}
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// If no payload, error union is represented by error set.
return operand_id;
}
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
}
fn airErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return null; // No error possible.
}
return try self.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
}
fn airWrapErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const operand_id = try self.resolve(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return operand_id;
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = operand_id;
members[eu_layout.payloadFieldIndex()] = try self.spv.constUndef(payload_ty_id);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airWrapErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOf(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return try self.constInt(Type.anyerror, 0, .direct);
}
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = try self.constInt(Type.anyerror, 0, .direct);
members[eu_layout.payloadFieldIndex()] = try self.convertToIndirect(payload_ty, operand_id);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airIsNull(self: *NavGen, inst: Air.Inst.Index, is_pointer: bool, pred: enum { is_null, is_non_null }) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const operand_ty = self.typeOf(un_op);
const optional_ty = if (is_pointer) operand_ty.childType(zcu) else operand_ty;
const payload_ty = optional_ty.optionalChild(zcu);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
if (optional_ty.optionalReprIsPayload(zcu)) {
// Pointer payload represents nullability: pointer or slice.
const loaded_id = if (is_pointer)
try self.load(optional_ty, operand_id, .{})
else
operand_id;
const ptr_ty = if (payload_ty.isSlice(zcu))
payload_ty.slicePtrFieldType(zcu)
else
payload_ty;
const ptr_id = if (payload_ty.isSlice(zcu))
try self.extractField(ptr_ty, loaded_id, 0)
else
loaded_id;
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const null_id = try self.spv.constNull(ptr_ty_id);
const null_tmp = Temporary.init(ptr_ty, null_id);
const ptr = Temporary.init(ptr_ty, ptr_id);
const op: std.math.CompareOperator = switch (pred) {
.is_null => .eq,
.is_non_null => .neq,
};
const result = try self.cmp(op, ptr, null_tmp);
return try result.materialize(self);
}
const is_non_null_id = blk: {
if (is_pointer) {
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const storage_class = self.spvStorageClass(operand_ty.ptrAddressSpace(zcu));
const bool_ptr_ty_id = try self.ptrType(Type.bool, storage_class);
const tag_ptr_id = try self.accessChain(bool_ptr_ty_id, operand_id, &.{1});
break :blk try self.load(Type.bool, tag_ptr_id, .{});
}
break :blk try self.load(Type.bool, operand_id, .{});
}
break :blk if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, operand_id, 1)
else
// Optional representation is bool indicating whether the optional is set
// Optionals with no payload are represented as an (indirect) bool, so convert
// it back to the direct bool here.
try self.convertToDirect(Type.bool, operand_id);
};
return switch (pred) {
.is_null => blk: {
// Invert condition
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = bool_ty_id,
.id_result = result_id,
.operand = is_non_null_id,
});
break :blk result_id;
},
.is_non_null => is_non_null_id,
};
}
fn airIsErr(self: *NavGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?IdRef {
const zcu = self.pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const err_union_ty = self.typeOf(un_op);
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
return try self.constBool(pred == .is_non_err, .direct);
}
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
const error_id = if (!eu_layout.payload_has_bits)
operand_id
else
try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
const result_id = self.spv.allocId();
switch (pred) {
inline else => |pred_ct| try self.func.body.emit(
self.spv.gpa,
switch (pred_ct) {
.is_err => .OpINotEqual,
.is_non_err => .OpIEqual,
},
.{
.id_result_type = bool_ty_id,
.id_result = result_id,
.operand_1 = error_id,
.operand_2 = try self.constInt(Type.anyerror, 0, .direct),
},
),
}
return result_id;
}
fn airUnwrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOf(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
if (optional_ty.optionalReprIsPayload(zcu)) {
return operand_id;
}
return try self.extractField(payload_ty, operand_id, 0);
}
fn airUnwrapOptionalPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const optional_ty = operand_ty.childType(zcu);
const payload_ty = optional_ty.optionalChild(zcu);
const result_ty = self.typeOfIndex(inst);
const result_ty_id = try self.resolveType(result_ty, .direct);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// There is no payload, but we still need to return a valid pointer.
// We can just return anything here, so just return a pointer to the operand.
return try self.bitCast(result_ty, operand_ty, operand_id);
}
if (optional_ty.optionalReprIsPayload(zcu)) {
// They are the same value.
return try self.bitCast(result_ty, operand_ty, operand_id);
}
return try self.accessChain(result_ty_id, operand_id, &.{0});
}
fn airWrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const payload_ty = self.typeOf(ty_op.operand);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return try self.constBool(true, .indirect);
}
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOfIndex(inst);
if (optional_ty.optionalReprIsPayload(zcu)) {
return operand_id;
}
const payload_id = try self.convertToIndirect(payload_ty, operand_id);
const members = [_]IdRef{ payload_id, try self.constBool(true, .indirect) };
const types = [_]Type{ payload_ty, Type.bool };
return try self.constructStruct(optional_ty, &types, &members);
}
fn airSwitchBr(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const switch_br = self.air.unwrapSwitch(inst);
const cond_ty = self.typeOf(switch_br.operand);
const cond = try self.resolve(switch_br.operand);
var cond_indirect = try self.convertToIndirect(cond_ty, cond);
const cond_words: u32 = switch (cond_ty.zigTypeTag(zcu)) {
.bool, .error_set => 1,
.int => blk: {
const bits = cond_ty.intInfo(zcu).bits;
const backing_bits = self.backingIntBits(bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) 1 else 2;
},
.@"enum" => blk: {
const int_ty = cond_ty.intTagType(zcu);
const int_info = int_ty.intInfo(zcu);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) 1 else 2;
},
.pointer => blk: {
cond_indirect = try self.intFromPtr(cond_indirect);
break :blk target.ptrBitWidth() / 32;
},
// TODO: Figure out which types apply here, and work around them as we can only do integers.
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(zcu))}),
};
const num_cases = switch_br.cases_len;
// Compute the total number of arms that we need.
// Zig switches are grouped by condition, so we need to loop through all of them
const num_conditions = blk: {
var num_conditions: u32 = 0;
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) return self.todo("switch with ranges", .{});
num_conditions += @intCast(case.items.len);
}
break :blk num_conditions;
};
// First, pre-allocate the labels for the cases.
const case_labels = self.spv.allocIds(num_cases);
// We always need the default case - if zig has none, we will generate unreachable there.
const default = self.spv.allocId();
const merge_label = switch (self.control_flow) {
.structured => self.spv.allocId(),
.unstructured => null,
};
if (self.control_flow == .structured) {
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label.?,
.selection_control = .{},
});
}
// Emit the instruction before generating the blocks.
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
self.func.body.writeOperand(IdRef, cond_indirect);
self.func.body.writeOperand(IdRef, default);
// Emit each of the cases
{
var it = switch_br.iterateCases();
while (it.next()) |case| {
// SPIR-V needs a literal here, which' width depends on the case condition.
const label = case_labels.at(case.idx);
for (case.items) |item| {
const value = (try self.air.value(item, pt)) orelse unreachable;
const int_val: u64 = switch (cond_ty.zigTypeTag(zcu)) {
.bool, .int => if (cond_ty.isSignedInt(zcu)) @bitCast(value.toSignedInt(zcu)) else value.toUnsignedInt(zcu),
.@"enum" => blk: {
// TODO: figure out of cond_ty is correct (something with enum literals)
break :blk (try value.intFromEnum(cond_ty, pt)).toUnsignedInt(zcu); // TODO: composite integer constants
},
.error_set => value.getErrorInt(zcu),
.pointer => value.toUnsignedInt(zcu),
else => unreachable,
};
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
1 => .{ .uint32 = @intCast(int_val) },
2 => .{ .uint64 = int_val },
else => unreachable,
};
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
self.func.body.writeOperand(IdRef, label);
}
}
}
var incoming_structured_blocks: std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming) = .empty;
defer incoming_structured_blocks.deinit(self.gpa);
if (self.control_flow == .structured) {
try incoming_structured_blocks.ensureUnusedCapacity(self.gpa, num_cases + 1);
}
// Now, finally, we can start emitting each of the cases.
var it = switch_br.iterateCases();
while (it.next()) |case| {
const label = case_labels.at(case.idx);
try self.beginSpvBlock(label);
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, case.body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(case.body);
},
}
}
const else_body = it.elseBody();
try self.beginSpvBlock(default);
if (else_body.len != 0) {
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, else_body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(else_body);
},
}
} else {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.control_flow == .structured) {
try self.beginSpvBlock(merge_label.?);
const next_block = try self.structuredNextBlock(incoming_structured_blocks.items);
try self.structuredBreak(next_block);
}
}
fn airUnreach(self: *NavGen) !void {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
fn airDbgStmt(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const dbg_stmt = self.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
const path = zcu.navFileScope(self.owner_nav).sub_file_path;
try self.func.body.emit(self.spv.gpa, .OpLine, .{
.file = try self.spv.resolveString(path),
.line = self.base_line + dbg_stmt.line + 1,
.column = dbg_stmt.column + 1,
});
}
fn airDbgInlineBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.DbgInlineBlock, inst_datas[@intFromEnum(inst)].ty_pl.payload);
const old_base_line = self.base_line;
defer self.base_line = old_base_line;
self.base_line = zcu.navSrcLine(zcu.funcInfo(extra.data.func).owner_nav);
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
}
fn airDbgVar(self: *NavGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const target_id = try self.resolve(pl_op.operand);
const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload);
try self.spv.debugName(target_id, name.toSlice(self.air));
}
fn airAssembly(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
const clobbers_len: u31 = @truncate(extra.data.flags);
if (!is_volatile and self.liveness.isUnused(inst)) return null;
var extra_i: usize = extra.end;
const outputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]);
extra_i += outputs.len;
const inputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]);
extra_i += inputs.len;
if (outputs.len > 1) {
return self.todo("implement inline asm with more than 1 output", .{});
}
var as = SpvAssembler{
.gpa = self.gpa,
.spv = self.spv,
.func = &self.func,
};
defer as.deinit();
var output_extra_i = extra_i;
for (outputs) |output| {
if (output != .none) {
return self.todo("implement inline asm with non-returned output", .{});
}
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record output and use it somewhere.
}
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const input_ty = self.typeOf(input);
if (std.mem.eql(u8, constraint, "c")) {
// constant
const val = (try self.air.value(input, self.pt)) orelse {
return self.fail("assembly inputs with 'c' constraint have to be compile-time known", .{});
};
// TODO: This entire function should be handled a bit better...
const ip = &zcu.intern_pool;
switch (ip.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => return self.fail("assembly input with 'c' constraint cannot be undefined", .{}),
.int => {
try as.value_map.put(as.gpa, name, .{ .constant = @intCast(val.toUnsignedInt(zcu)) });
},
else => unreachable, // TODO
}
} else if (std.mem.eql(u8, constraint, "t")) {
// type
if (input_ty.zigTypeTag(zcu) == .type) {
// This assembly input is a type instead of a value.
// That's fine for now, just make sure to resolve it as such.
const val = (try self.air.value(input, self.pt)).?;
const ty_id = try self.resolveType(val.toType(), .direct);
try as.value_map.put(as.gpa, name, .{ .ty = ty_id });
} else {
const ty_id = try self.resolveType(input_ty, .direct);
try as.value_map.put(as.gpa, name, .{ .ty = ty_id });
}
} else {
if (input_ty.zigTypeTag(zcu) == .type) {
return self.fail("use the 't' constraint to supply types to SPIR-V inline assembly", .{});
}
const val_id = try self.resolve(input);
try as.value_map.put(as.gpa, name, .{ .value = val_id });
}
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
extra_i += clobber.len / 4 + 1;
// TODO: Record clobber and use it somewhere.
}
}
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
as.assemble(asm_source) catch |err| switch (err) {
error.AssembleFail => {
// TODO: For now the compiler only supports a single error message per decl,
// so to translate the possible multiple errors from the assembler, emit
// them as notes here.
// TODO: Translate proper error locations.
assert(as.errors.items.len != 0);
assert(self.error_msg == null);
const src_loc = zcu.navSrcLoc(self.owner_nav);
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
const notes = try zcu.gpa.alloc(Zcu.ErrorMsg, as.errors.items.len);
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
{
errdefer zcu.gpa.free(notes);
var i: usize = 0;
errdefer for (notes[0..i]) |*note| {
note.deinit(zcu.gpa);
};
while (i < as.errors.items.len) : (i += 1) {
notes[i] = try Zcu.ErrorMsg.init(zcu.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
}
}
self.error_msg.?.notes = notes;
return error.CodegenFail;
},
else => |others| return others,
};
for (outputs) |output| {
_ = output;
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const result = as.value_map.get(name) orelse return {
return self.fail("invalid asm output '{s}'", .{name});
};
switch (result) {
.just_declared, .unresolved_forward_reference => unreachable,
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
.value => |ref| return ref,
.constant => return self.fail("cannot return constant from assembly", .{}),
}
// TODO: Multiple results
// TODO: Check that the output type from assembly is the same as the type actually expected by Zig.
}
return null;
}
fn airCall(self: *NavGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
_ = modifier;
const pt = self.pt;
const zcu = pt.zcu;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const args: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]);
const callee_ty = self.typeOf(pl_op.operand);
const zig_fn_ty = switch (callee_ty.zigTypeTag(zcu)) {
.@"fn" => callee_ty,
.pointer => return self.fail("cannot call function pointers", .{}),
else => unreachable,
};
const fn_info = zcu.typeToFunc(zig_fn_ty).?;
const return_type = fn_info.return_type;
const result_type_id = try self.resolveFnReturnType(Type.fromInterned(return_type));
const result_id = self.spv.allocId();
const callee_id = try self.resolve(pl_op.operand);
comptime assert(zig_call_abi_ver == 3);
const params = try self.gpa.alloc(spec.IdRef, args.len);
defer self.gpa.free(params);
var n_params: usize = 0;
for (args) |arg| {
// Note: resolve() might emit instructions, so we need to call it
// before starting to emit OpFunctionCall instructions. Hence the
// temporary params buffer.
const arg_ty = self.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
const arg_id = try self.resolve(arg);
params[n_params] = arg_id;
n_params += 1;
}
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = result_type_id,
.id_result = result_id,
.function = callee_id,
.id_ref_3 = params[0..n_params],
});
if (self.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(zcu)) {
return null;
}
return result_id;
}
fn builtin3D(self: *NavGen, result_ty: Type, builtin: spec.BuiltIn, dimension: u32, out_of_range_value: anytype) !IdRef {
if (dimension >= 3) {
return try self.constInt(result_ty, out_of_range_value, .direct);
}
const vec_ty = try self.pt.vectorType(.{
.len = 3,
.child = result_ty.toIntern(),
});
const ptr_ty_id = try self.ptrType(vec_ty, .Input);
const spv_decl_index = try self.spv.builtin(ptr_ty_id, builtin);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
const ptr = self.spv.declPtr(spv_decl_index).result_id;
const vec = try self.load(vec_ty, ptr, .{});
return try self.extractVectorComponent(result_ty, vec, dimension);
}
fn airWorkItemId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .LocalInvocationId, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn airWorkGroupSize(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .WorkgroupSize, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn airWorkGroupId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .WorkgroupId, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn typeOf(self: *NavGen, inst: Air.Inst.Ref) Type {
const zcu = self.pt.zcu;
return self.air.typeOf(inst, &zcu.intern_pool);
}
fn typeOfIndex(self: *NavGen, inst: Air.Inst.Index) Type {
const zcu = self.pt.zcu;
return self.air.typeOfIndex(inst, &zcu.intern_pool);
}
};
|