1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
|
//! For each AIR instruction, we want to know:
//! * Is the instruction unreferenced (e.g. dies immediately)?
//! * For each of its operands, does the operand die with this instruction (e.g. is
//! this the last reference to it)?
//! Some instructions are special, such as:
//! * Conditional Branches
//! * Switch Branches
const std = @import("std");
const log = std.log.scoped(.liveness);
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Log2Int = std.math.Log2Int;
const Writer = std.Io.Writer;
const Liveness = @This();
const trace = @import("../tracy.zig").trace;
const Air = @import("../Air.zig");
const InternPool = @import("../InternPool.zig");
const Zcu = @import("../Zcu.zig");
pub const Verify = @import("Liveness/Verify.zig");
/// This array is split into sets of 4 bits per AIR instruction.
/// The MSB (0bX000) is whether the instruction is unreferenced.
/// The LSB (0b000X) is the first operand, and so on, up to 3 operands. A set bit means the
/// operand dies after this instruction.
/// Instructions which need more data to track liveness have special handling via the
/// `special` table.
tomb_bits: []usize,
/// Sparse table of specially handled instructions. The value is an index into the `extra`
/// array. The meaning of the data depends on the AIR tag.
/// * `cond_br` - points to a `CondBr` in `extra` at this index.
/// * `try`, `try_ptr` - points to a `CondBr` in `extra` at this index. The error path (the block
/// in the instruction) is considered the "else" path, and the rest of the block the "then".
/// * `switch_br` - points to a `SwitchBr` in `extra` at this index.
/// * `loop_switch_br` - points to a `SwitchBr` in `extra` at this index.
/// * `block` - points to a `Block` in `extra` at this index.
/// * `asm`, `call`, `aggregate_init` - the value is a set of bits which are the extra tomb
/// bits of operands.
/// The main tomb bits are still used and the extra ones are starting with the lsb of the
/// value here.
special: std.AutoHashMapUnmanaged(Air.Inst.Index, u32),
/// Auxiliary data. The way this data is interpreted is determined contextually.
extra: []const u32,
/// Trailing is the set of instructions whose lifetimes end at the start of the then branch,
/// followed by the set of instructions whose lifetimes end at the start of the else branch.
pub const CondBr = struct {
then_death_count: u32,
else_death_count: u32,
};
/// Trailing is:
/// * For each case in the same order as in the AIR:
/// - case_death_count: u32
/// - Air.Inst.Index for each `case_death_count`: set of instructions whose lifetimes
/// end at the start of this case.
/// * Air.Inst.Index for each `else_death_count`: set of instructions whose lifetimes
/// end at the start of the else case.
pub const SwitchBr = struct {
else_death_count: u32,
};
/// Trailing is the set of instructions which die in the block. Note that these are not additional
/// deaths (they are all recorded as normal within the block), but backends may use this information
/// as a more efficient way to track which instructions are still alive after a block.
pub const Block = struct {
death_count: u32,
};
/// Liveness analysis runs in several passes. Each pass iterates backwards over instructions in
/// bodies, and recurses into bodies.
const LivenessPass = enum {
/// In this pass, we perform some basic analysis of loops to gain information the main pass needs.
/// In particular, for every `loop` and `loop_switch_br`, we track the following information:
/// * Every outer block which the loop body contains a `br` to.
/// * Every outer loop which the loop body contains a `repeat` to.
/// * Every operand referenced within the loop body but created outside the loop.
/// This gives the main analysis pass enough information to determine the full set of
/// instructions which need to be alive when a loop repeats. This data is TEMPORARILY stored in
/// `a.extra`. It is not re-added to `extra` by the main pass, since it is not useful to
/// backends.
loop_analysis,
/// This pass performs the main liveness analysis, setting up tombs and extra data while
/// considering control flow etc.
main_analysis,
};
/// Each analysis pass may wish to pass data through calls. A pointer to a `LivenessPassData(pass)`
/// stored on the stack is passed through calls to `analyzeInst` etc.
fn LivenessPassData(comptime pass: LivenessPass) type {
return switch (pass) {
.loop_analysis => struct {
/// The set of blocks which are exited with a `br` instruction at some point within this
/// body and which we are currently within. Also includes `loop`s which are the target
/// of a `repeat` instruction, and `loop_switch_br`s which are the target of a
/// `switch_dispatch` instruction.
breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .empty,
/// The set of operands for which we have seen at least one usage but not their birth.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .empty,
fn deinit(self: *@This(), gpa: Allocator) void {
self.breaks.deinit(gpa);
self.live_set.deinit(gpa);
}
},
.main_analysis => struct {
/// Every `block` and `loop` currently under analysis.
block_scopes: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockScope) = .empty,
/// The set of instructions currently alive in the current control
/// flow branch.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .empty,
/// The extra data initialized by the `loop_analysis` pass for this pass to consume.
/// Owned by this struct during this pass.
old_extra: std.ArrayListUnmanaged(u32) = .empty,
const BlockScope = struct {
/// If this is a `block`, these instructions are alive upon a `br` to this block.
/// If this is a `loop`, these instructions are alive upon a `repeat` to this block.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
};
fn deinit(self: *@This(), gpa: Allocator) void {
var it = self.block_scopes.valueIterator();
while (it.next()) |block| {
block.live_set.deinit(gpa);
}
self.block_scopes.deinit(gpa);
self.live_set.deinit(gpa);
self.old_extra.deinit(gpa);
}
},
};
}
pub fn analyze(zcu: *Zcu, air: Air, intern_pool: *InternPool) Allocator.Error!Liveness {
const tracy = trace(@src());
defer tracy.end();
const gpa = zcu.gpa;
var a: Analysis = .{
.gpa = gpa,
.zcu = zcu,
.air = air,
.tomb_bits = try gpa.alloc(
usize,
(air.instructions.len * bpi + @bitSizeOf(usize) - 1) / @bitSizeOf(usize),
),
.extra = .{},
.special = .{},
.intern_pool = intern_pool,
};
errdefer gpa.free(a.tomb_bits);
errdefer a.special.deinit(gpa);
defer a.extra.deinit(gpa);
@memset(a.tomb_bits, 0);
const main_body = air.getMainBody();
{
var data: LivenessPassData(.loop_analysis) = .{};
defer data.deinit(gpa);
try analyzeBody(&a, .loop_analysis, &data, main_body);
}
{
var data: LivenessPassData(.main_analysis) = .{};
defer data.deinit(gpa);
data.old_extra = a.extra;
a.extra = .{};
try analyzeBody(&a, .main_analysis, &data, main_body);
assert(data.live_set.count() == 0);
}
return .{
.tomb_bits = a.tomb_bits,
.special = a.special,
.extra = try a.extra.toOwnedSlice(gpa),
};
}
pub fn getTombBits(l: Liveness, inst: Air.Inst.Index) Bpi {
const usize_index = (@intFromEnum(inst) * bpi) / @bitSizeOf(usize);
return @as(Bpi, @truncate(l.tomb_bits[usize_index] >>
@as(Log2Int(usize), @intCast((@intFromEnum(inst) % (@bitSizeOf(usize) / bpi)) * bpi))));
}
pub fn isUnused(l: Liveness, inst: Air.Inst.Index) bool {
const usize_index = (@intFromEnum(inst) * bpi) / @bitSizeOf(usize);
const mask = @as(usize, 1) <<
@as(Log2Int(usize), @intCast((@intFromEnum(inst) % (@bitSizeOf(usize) / bpi)) * bpi + (bpi - 1)));
return (l.tomb_bits[usize_index] & mask) != 0;
}
pub fn operandDies(l: Liveness, inst: Air.Inst.Index, operand: OperandInt) bool {
assert(operand < bpi - 1);
const usize_index = (@intFromEnum(inst) * bpi) / @bitSizeOf(usize);
const mask = @as(usize, 1) <<
@as(Log2Int(usize), @intCast((@intFromEnum(inst) % (@bitSizeOf(usize) / bpi)) * bpi + operand));
return (l.tomb_bits[usize_index] & mask) != 0;
}
/// Higher level API.
pub const CondBrSlices = struct {
then_deaths: []const Air.Inst.Index,
else_deaths: []const Air.Inst.Index,
};
pub fn getCondBr(l: Liveness, inst: Air.Inst.Index) CondBrSlices {
var index: usize = l.special.get(inst) orelse return .{
.then_deaths = &.{},
.else_deaths = &.{},
};
const then_death_count = l.extra[index];
index += 1;
const else_death_count = l.extra[index];
index += 1;
const then_deaths: []const Air.Inst.Index = @ptrCast(l.extra[index..][0..then_death_count]);
index += then_death_count;
return .{
.then_deaths = then_deaths,
.else_deaths = @ptrCast(l.extra[index..][0..else_death_count]),
};
}
/// Indexed by case number as they appear in AIR.
/// Else is the last element.
pub const SwitchBrTable = struct {
deaths: []const []const Air.Inst.Index,
};
/// Caller owns the memory.
pub fn getSwitchBr(l: Liveness, gpa: Allocator, inst: Air.Inst.Index, cases_len: u32) Allocator.Error!SwitchBrTable {
var index: usize = l.special.get(inst) orelse return .{ .deaths = &.{} };
const else_death_count = l.extra[index];
index += 1;
var deaths = try gpa.alloc([]const Air.Inst.Index, cases_len);
errdefer gpa.free(deaths);
var case_i: u32 = 0;
while (case_i < cases_len - 1) : (case_i += 1) {
const case_death_count: u32 = l.extra[index];
index += 1;
deaths[case_i] = @ptrCast(l.extra[index..][0..case_death_count]);
index += case_death_count;
}
{
// Else
deaths[case_i] = @ptrCast(l.extra[index..][0..else_death_count]);
}
return .{ .deaths = deaths };
}
/// Note that this information is technically redundant, but is useful for
/// backends nonetheless: see `Block`.
pub const BlockSlices = struct {
deaths: []const Air.Inst.Index,
};
pub fn getBlock(l: Liveness, inst: Air.Inst.Index) BlockSlices {
const index: usize = l.special.get(inst) orelse return .{
.deaths = &.{},
};
const death_count = l.extra[index];
const deaths: []const Air.Inst.Index = @ptrCast(l.extra[index + 1 ..][0..death_count]);
return .{
.deaths = deaths,
};
}
pub const LoopSlice = struct {
deaths: []const Air.Inst.Index,
};
pub fn deinit(l: *Liveness, gpa: Allocator) void {
gpa.free(l.tomb_bits);
gpa.free(l.extra);
l.special.deinit(gpa);
l.* = undefined;
}
pub fn iterateBigTomb(l: Liveness, inst: Air.Inst.Index) BigTomb {
return .{
.tomb_bits = l.getTombBits(inst),
.extra_start = l.special.get(inst) orelse 0,
.extra_offset = 0,
.extra = l.extra,
.bit_index = 0,
.reached_end = false,
};
}
/// How many tomb bits per AIR instruction.
pub const bpi = 4;
pub const Bpi = std.meta.Int(.unsigned, bpi);
pub const OperandInt = std.math.Log2Int(Bpi);
/// Useful for decoders of Liveness information.
pub const BigTomb = struct {
tomb_bits: Liveness.Bpi,
bit_index: u32,
extra_start: u32,
extra_offset: u32,
extra: []const u32,
reached_end: bool,
/// Returns whether the next operand dies.
pub fn feed(bt: *BigTomb) bool {
if (bt.reached_end) return false;
const this_bit_index = bt.bit_index;
bt.bit_index += 1;
const small_tombs = bpi - 1;
if (this_bit_index < small_tombs) {
const dies = @as(u1, @truncate(bt.tomb_bits >> @as(Liveness.OperandInt, @intCast(this_bit_index)))) != 0;
return dies;
}
const big_bit_index = this_bit_index - small_tombs;
while (big_bit_index - bt.extra_offset * 31 >= 31) {
if (@as(u1, @truncate(bt.extra[bt.extra_start + bt.extra_offset] >> 31)) != 0) {
bt.reached_end = true;
return false;
}
bt.extra_offset += 1;
}
const dies = @as(u1, @truncate(bt.extra[bt.extra_start + bt.extra_offset] >>
@as(u5, @intCast(big_bit_index - bt.extra_offset * 31)))) != 0;
return dies;
}
};
/// In-progress data; on successful analysis converted into `Liveness`.
const Analysis = struct {
gpa: Allocator,
zcu: *Zcu,
air: Air,
intern_pool: *InternPool,
tomb_bits: []usize,
special: std.AutoHashMapUnmanaged(Air.Inst.Index, u32),
extra: std.ArrayListUnmanaged(u32),
fn addExtra(a: *Analysis, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try a.extra.ensureUnusedCapacity(a.gpa, fields.len);
return addExtraAssumeCapacity(a, extra);
}
fn addExtraAssumeCapacity(a: *Analysis, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result = @as(u32, @intCast(a.extra.items.len));
inline for (fields) |field| {
a.extra.appendAssumeCapacity(switch (field.type) {
u32 => @field(extra, field.name),
else => @compileError("bad field type"),
});
}
return result;
}
};
fn analyzeBody(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
body: []const Air.Inst.Index,
) Allocator.Error!void {
var i: usize = body.len;
while (i != 0) {
i -= 1;
const inst = body[i];
try analyzeInst(a, pass, data, inst);
}
}
fn analyzeInst(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) Allocator.Error!void {
const ip = a.intern_pool;
const inst_tags = a.air.instructions.items(.tag);
const inst_datas = a.air.instructions.items(.data);
switch (inst_tags[@intFromEnum(inst)]) {
.add,
.add_safe,
.add_optimized,
.add_wrap,
.add_sat,
.sub,
.sub_safe,
.sub_optimized,
.sub_wrap,
.sub_sat,
.mul,
.mul_safe,
.mul_optimized,
.mul_wrap,
.mul_sat,
.div_float,
.div_float_optimized,
.div_trunc,
.div_trunc_optimized,
.div_floor,
.div_floor_optimized,
.div_exact,
.div_exact_optimized,
.rem,
.rem_optimized,
.mod,
.mod_optimized,
.bit_and,
.bit_or,
.xor,
.cmp_lt,
.cmp_lt_optimized,
.cmp_lte,
.cmp_lte_optimized,
.cmp_eq,
.cmp_eq_optimized,
.cmp_gte,
.cmp_gte_optimized,
.cmp_gt,
.cmp_gt_optimized,
.cmp_neq,
.cmp_neq_optimized,
.bool_and,
.bool_or,
.store,
.store_safe,
.array_elem_val,
.slice_elem_val,
.ptr_elem_val,
.shl,
.shl_exact,
.shl_sat,
.shr,
.shr_exact,
.atomic_store_unordered,
.atomic_store_monotonic,
.atomic_store_release,
.atomic_store_seq_cst,
.set_union_tag,
.min,
.max,
.memset,
.memset_safe,
.memcpy,
.memmove,
=> {
const o = inst_datas[@intFromEnum(inst)].bin_op;
return analyzeOperands(a, pass, data, inst, .{ o.lhs, o.rhs, .none });
},
.vector_store_elem => {
const o = inst_datas[@intFromEnum(inst)].vector_store_elem;
const extra = a.air.extraData(Air.Bin, o.payload).data;
return analyzeOperands(a, pass, data, inst, .{ o.vector_ptr, extra.lhs, extra.rhs });
},
.arg,
.alloc,
.ret_ptr,
.breakpoint,
.dbg_stmt,
.dbg_empty_stmt,
.ret_addr,
.frame_addr,
.wasm_memory_size,
.err_return_trace,
.save_err_return_trace_index,
.runtime_nav_ptr,
.c_va_start,
.work_item_id,
.work_group_size,
.work_group_id,
=> return analyzeOperands(a, pass, data, inst, .{ .none, .none, .none }),
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.trap,
.unreach,
=> return analyzeFuncEnd(a, pass, data, inst, .{ .none, .none, .none }),
.not,
.bitcast,
.load,
.fpext,
.fptrunc,
.intcast,
.intcast_safe,
.trunc,
.optional_payload,
.optional_payload_ptr,
.optional_payload_ptr_set,
.errunion_payload_ptr_set,
.wrap_optional,
.unwrap_errunion_payload,
.unwrap_errunion_err,
.unwrap_errunion_payload_ptr,
.unwrap_errunion_err_ptr,
.wrap_errunion_payload,
.wrap_errunion_err,
.slice_ptr,
.slice_len,
.ptr_slice_len_ptr,
.ptr_slice_ptr_ptr,
.struct_field_ptr_index_0,
.struct_field_ptr_index_1,
.struct_field_ptr_index_2,
.struct_field_ptr_index_3,
.array_to_slice,
.int_from_float,
.int_from_float_optimized,
.int_from_float_safe,
.int_from_float_optimized_safe,
.float_from_int,
.get_union_tag,
.clz,
.ctz,
.popcount,
.byte_swap,
.bit_reverse,
.splat,
.error_set_has_value,
.addrspace_cast,
.c_va_arg,
.c_va_copy,
.abs,
=> {
const o = inst_datas[@intFromEnum(inst)].ty_op;
return analyzeOperands(a, pass, data, inst, .{ o.operand, .none, .none });
},
.is_null,
.is_non_null,
.is_null_ptr,
.is_non_null_ptr,
.is_err,
.is_non_err,
.is_err_ptr,
.is_non_err_ptr,
.is_named_enum_value,
.tag_name,
.error_name,
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
.floor,
.ceil,
.round,
.trunc_float,
.neg,
.neg_optimized,
.cmp_lt_errors_len,
.set_err_return_trace,
.c_va_end,
=> {
const operand = inst_datas[@intFromEnum(inst)].un_op;
return analyzeOperands(a, pass, data, inst, .{ operand, .none, .none });
},
.ret,
.ret_safe,
.ret_load,
=> {
const operand = inst_datas[@intFromEnum(inst)].un_op;
return analyzeFuncEnd(a, pass, data, inst, .{ operand, .none, .none });
},
.add_with_overflow,
.sub_with_overflow,
.mul_with_overflow,
.shl_with_overflow,
.ptr_add,
.ptr_sub,
.ptr_elem_ptr,
.slice_elem_ptr,
.slice,
=> {
const ty_pl = inst_datas[@intFromEnum(inst)].ty_pl;
const extra = a.air.extraData(Air.Bin, ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, .none });
},
.dbg_var_ptr,
.dbg_var_val,
.dbg_arg_inline,
=> {
const operand = inst_datas[@intFromEnum(inst)].pl_op.operand;
return analyzeOperands(a, pass, data, inst, .{ operand, .none, .none });
},
.prefetch => {
const prefetch = inst_datas[@intFromEnum(inst)].prefetch;
return analyzeOperands(a, pass, data, inst, .{ prefetch.ptr, .none, .none });
},
.call, .call_always_tail, .call_never_tail, .call_never_inline => {
const inst_data = inst_datas[@intFromEnum(inst)].pl_op;
const callee = inst_data.operand;
const extra = a.air.extraData(Air.Call, inst_data.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra.items[extra.end..][0..extra.data.args_len]));
if (args.len + 1 <= bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
buf[0] = callee;
@memcpy(buf[1..][0..args.len], args);
return analyzeOperands(a, pass, data, inst, buf);
}
var big = try AnalyzeBigOperands(pass).init(a, data, inst, args.len + 1);
defer big.deinit();
var i: usize = args.len;
while (i > 0) {
i -= 1;
try big.feed(args[i]);
}
try big.feed(callee);
return big.finish();
},
.select => {
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
const extra = a.air.extraData(Air.Bin, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.lhs, extra.rhs });
},
.shuffle_one => {
const unwrapped = a.air.unwrapShuffleOne(a.zcu, inst);
return analyzeOperands(a, pass, data, inst, .{ unwrapped.operand, .none, .none });
},
.shuffle_two => {
const unwrapped = a.air.unwrapShuffleTwo(a.zcu, inst);
return analyzeOperands(a, pass, data, inst, .{ unwrapped.operand_a, unwrapped.operand_b, .none });
},
.reduce, .reduce_optimized => {
const reduce = inst_datas[@intFromEnum(inst)].reduce;
return analyzeOperands(a, pass, data, inst, .{ reduce.operand, .none, .none });
},
.cmp_vector, .cmp_vector_optimized => {
const extra = a.air.extraData(Air.VectorCmp, inst_datas[@intFromEnum(inst)].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, .none });
},
.aggregate_init => {
const ty_pl = inst_datas[@intFromEnum(inst)].ty_pl;
const aggregate_ty = ty_pl.ty.toType();
const len = @as(usize, @intCast(aggregate_ty.arrayLenIp(ip)));
const elements = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra.items[ty_pl.payload..][0..len]));
if (elements.len <= bpi - 1) {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
@memcpy(buf[0..elements.len], elements);
return analyzeOperands(a, pass, data, inst, buf);
}
var big = try AnalyzeBigOperands(pass).init(a, data, inst, elements.len);
defer big.deinit();
var i: usize = elements.len;
while (i > 0) {
i -= 1;
try big.feed(elements[i]);
}
return big.finish();
},
.union_init => {
const extra = a.air.extraData(Air.UnionInit, inst_datas[@intFromEnum(inst)].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.init, .none, .none });
},
.struct_field_ptr, .struct_field_val => {
const extra = a.air.extraData(Air.StructField, inst_datas[@intFromEnum(inst)].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.struct_operand, .none, .none });
},
.field_parent_ptr => {
const extra = a.air.extraData(Air.FieldParentPtr, inst_datas[@intFromEnum(inst)].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.field_ptr, .none, .none });
},
.cmpxchg_strong, .cmpxchg_weak => {
const extra = a.air.extraData(Air.Cmpxchg, inst_datas[@intFromEnum(inst)].ty_pl.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.ptr, extra.expected_value, extra.new_value });
},
.mul_add => {
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
const extra = a.air.extraData(Air.Bin, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ extra.lhs, extra.rhs, pl_op.operand });
},
.atomic_load => {
const ptr = inst_datas[@intFromEnum(inst)].atomic_load.ptr;
return analyzeOperands(a, pass, data, inst, .{ ptr, .none, .none });
},
.atomic_rmw => {
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
const extra = a.air.extraData(Air.AtomicRmw, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.operand, .none });
},
.br => return analyzeInstBr(a, pass, data, inst),
.repeat => return analyzeInstRepeat(a, pass, data, inst),
.switch_dispatch => return analyzeInstSwitchDispatch(a, pass, data, inst),
.assembly => {
const extra = a.air.extraData(Air.Asm, inst_datas[@intFromEnum(inst)].ty_pl.payload);
const outputs_len = extra.data.flags.outputs_len;
var extra_i: usize = extra.end;
const outputs = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra.items[extra_i..][0..outputs_len]));
extra_i += outputs.len;
const inputs = @as([]const Air.Inst.Ref, @ptrCast(a.air.extra.items[extra_i..][0..extra.data.inputs_len]));
extra_i += inputs.len;
const num_operands = simple: {
var buf = [1]Air.Inst.Ref{.none} ** (bpi - 1);
var buf_index: usize = 0;
for (outputs) |output| {
if (output != .none) {
if (buf_index < buf.len) buf[buf_index] = output;
buf_index += 1;
}
}
if (buf_index + inputs.len > buf.len) {
break :simple buf_index + inputs.len;
}
@memcpy(buf[buf_index..][0..inputs.len], inputs);
return analyzeOperands(a, pass, data, inst, buf);
};
var big = try AnalyzeBigOperands(pass).init(a, data, inst, num_operands);
defer big.deinit();
var i: usize = inputs.len;
while (i > 0) {
i -= 1;
try big.feed(inputs[i]);
}
i = outputs.len;
while (i > 0) {
i -= 1;
if (outputs[i] != .none) {
try big.feed(outputs[i]);
}
}
return big.finish();
},
inline .block, .dbg_inline_block => |comptime_tag| {
const ty_pl = inst_datas[@intFromEnum(inst)].ty_pl;
const extra = a.air.extraData(switch (comptime_tag) {
.block => Air.Block,
.dbg_inline_block => Air.DbgInlineBlock,
else => unreachable,
}, ty_pl.payload);
return analyzeInstBlock(a, pass, data, inst, ty_pl.ty, @ptrCast(a.air.extra.items[extra.end..][0..extra.data.body_len]));
},
.loop => return analyzeInstLoop(a, pass, data, inst),
.@"try", .try_cold => return analyzeInstCondBr(a, pass, data, inst, .@"try"),
.try_ptr, .try_ptr_cold => return analyzeInstCondBr(a, pass, data, inst, .try_ptr),
.cond_br => return analyzeInstCondBr(a, pass, data, inst, .cond_br),
.switch_br => return analyzeInstSwitchBr(a, pass, data, inst, false),
.loop_switch_br => return analyzeInstSwitchBr(a, pass, data, inst, true),
.wasm_memory_grow => {
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, .none, .none });
},
}
}
/// Every instruction should hit this (after handling any nested bodies), in every pass. In the
/// initial pass, it is responsible for marking deaths of the (first three) operands and noticing
/// immediate deaths.
fn analyzeOperands(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands: [bpi - 1]Air.Inst.Ref,
) Allocator.Error!void {
const gpa = a.gpa;
const ip = a.intern_pool;
switch (pass) {
.loop_analysis => {
_ = data.live_set.remove(inst);
for (operands) |op_ref| {
const operand = op_ref.toIndexAllowNone() orelse continue;
_ = try data.live_set.put(gpa, operand, {});
}
},
.main_analysis => {
const usize_index = (@intFromEnum(inst) * bpi) / @bitSizeOf(usize);
// This logic must synchronize with `will_die_immediately` in `AnalyzeBigOperands.init`.
const immediate_death = if (data.live_set.remove(inst)) blk: {
log.debug("[{}] %{d}: removed from live set", .{ pass, @intFromEnum(inst) });
break :blk false;
} else blk: {
log.debug("[{}] %{d}: immediate death", .{ pass, @intFromEnum(inst) });
break :blk true;
};
var tomb_bits: Bpi = @as(Bpi, @intFromBool(immediate_death)) << (bpi - 1);
// If our result is unused and the instruction doesn't need to be lowered, backends will
// skip the lowering of this instruction, so we don't want to record uses of operands.
// That way, we can mark as many instructions as possible unused.
if (!immediate_death or a.air.mustLower(inst, ip)) {
// Note that it's important we iterate over the operands backwards, so that if a dying
// operand is used multiple times we mark its last use as its death.
var i = operands.len;
while (i > 0) {
i -= 1;
const op_ref = operands[i];
const operand = op_ref.toIndexAllowNone() orelse continue;
const mask = @as(Bpi, 1) << @as(OperandInt, @intCast(i));
if ((try data.live_set.fetchPut(gpa, operand, {})) == null) {
log.debug("[{}] %{d}: added %{d} to live set (operand dies here)", .{ pass, @intFromEnum(inst), operand });
tomb_bits |= mask;
}
}
}
a.tomb_bits[usize_index] |= @as(usize, tomb_bits) <<
@as(Log2Int(usize), @intCast((@intFromEnum(inst) % (@bitSizeOf(usize) / bpi)) * bpi));
},
}
}
/// Like `analyzeOperands`, but for an instruction which returns from a function, so should
/// effectively kill every remaining live value other than its operands.
fn analyzeFuncEnd(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands: [bpi - 1]Air.Inst.Ref,
) Allocator.Error!void {
switch (pass) {
.loop_analysis => {
// No operands need to be alive if we're returning from the function, so we don't need
// to touch `breaks` here even though this is sort of like a break to the top level.
},
.main_analysis => {
data.live_set.clearRetainingCapacity();
},
}
return analyzeOperands(a, pass, data, inst, operands);
}
fn analyzeInstBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const br = inst_datas[@intFromEnum(inst)].br;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, br.block_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(br.block_inst).?; // we should always be breaking from an enclosing block
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ br.operand, .none, .none });
}
fn analyzeInstRepeat(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const repeat = inst_datas[@intFromEnum(inst)].repeat;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, repeat.loop_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(repeat.loop_inst).?; // we should always be repeating an enclosing loop
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
}
fn analyzeInstSwitchDispatch(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
// This happens to be identical to `analyzeInstBr`, but is separated anyway for clarity.
const inst_datas = a.air.instructions.items(.data);
const br = inst_datas[@intFromEnum(inst)].br;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, br.block_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(br.block_inst).?; // we should always be repeating an enclosing loop
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ br.operand, .none, .none });
}
fn analyzeInstBlock(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
ty: Air.Inst.Ref,
body: []const Air.Inst.Index,
) !void {
const gpa = a.gpa;
// We actually want to do `analyzeOperands` *first*, since our result logically doesn't
// exist until the block body ends (and we're iterating backwards)
try analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
switch (pass) {
.loop_analysis => {
try analyzeBody(a, pass, data, body);
_ = data.breaks.remove(inst);
},
.main_analysis => {
log.debug("[{}] %{f}: block live set is {f}", .{ pass, inst, fmtInstSet(&data.live_set) });
// We can move the live set because the body should have a noreturn
// instruction which overrides the set.
try data.block_scopes.put(gpa, inst, .{
.live_set = data.live_set.move(),
});
defer {
log.debug("[{}] %{f}: popped block scope", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
}
log.debug("[{}] %{f}: pushed new block scope", .{ pass, inst });
try analyzeBody(a, pass, data, body);
// If the block is noreturn, block deaths not only aren't useful, they're impossible to
// find: there could be more stuff alive after the block than before it!
if (!a.intern_pool.isNoReturn(ty.toType().toIntern())) {
// The block kills the difference in the live sets
const block_scope = data.block_scopes.get(inst).?;
const num_deaths = data.live_set.count() - block_scope.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, num_deaths + std.meta.fields(Block).len);
const extra_index = a.addExtraAssumeCapacity(Block{
.death_count = num_deaths,
});
var measured_num: u32 = 0;
var it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
if (!block_scope.live_set.contains(alive)) {
// Dies in block
a.extra.appendAssumeCapacity(@intFromEnum(alive));
measured_num += 1;
}
}
assert(measured_num == num_deaths); // post-live-set should be a subset of pre-live-set
try a.special.put(gpa, inst, extra_index);
log.debug("[{}] %{f}: block deaths are {f}", .{
pass,
inst,
fmtInstList(@ptrCast(a.extra.items[extra_index + 1 ..][0..num_deaths])),
});
}
},
}
}
fn writeLoopInfo(
a: *Analysis,
data: *LivenessPassData(.loop_analysis),
inst: Air.Inst.Index,
old_breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
old_live: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
) !void {
const gpa = a.gpa;
// `loop`s are guaranteed to have at least one matching `repeat`.
// Similarly, `loop_switch_br`s have a matching `switch_dispatch`.
// However, we no longer care about repeats of this loop for resolving
// which operands must live within it.
assert(data.breaks.remove(inst));
const extra_index: u32 = @intCast(a.extra.items.len);
const num_breaks = data.breaks.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_breaks);
a.extra.appendAssumeCapacity(num_breaks);
var it = data.breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(block_inst));
}
log.debug("[{}] %{f}: includes breaks to {f}", .{ LivenessPass.loop_analysis, inst, fmtInstSet(&data.breaks) });
// Now we put the live operands from the loop body in too
const num_live = data.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_live);
a.extra.appendAssumeCapacity(num_live);
it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(alive));
}
log.debug("[{}] %{f}: maintain liveness of {f}", .{ LivenessPass.loop_analysis, inst, fmtInstSet(&data.live_set) });
try a.special.put(gpa, inst, extra_index);
// Add back operands which were previously alive
it = old_live.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
// And the same for breaks
it = old_breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
try data.breaks.put(gpa, block_inst, {});
}
}
/// When analyzing a loop in the main pass, sets up `data.live_set` to be the set
/// of operands known to be alive when the loop repeats.
fn resolveLoopLiveSet(
a: *Analysis,
data: *LivenessPassData(.main_analysis),
inst: Air.Inst.Index,
) !void {
const gpa = a.gpa;
const extra_idx = a.special.fetchRemove(inst).?.value;
const num_breaks = data.old_extra.items[extra_idx];
const breaks: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + 1 ..][0..num_breaks]);
const num_loop_live = data.old_extra.items[extra_idx + num_breaks + 1];
const loop_live: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + num_breaks + 2 ..][0..num_loop_live]);
// This is necessarily not in the same control flow branch, because loops are noreturn
data.live_set.clearRetainingCapacity();
try data.live_set.ensureUnusedCapacity(gpa, @intCast(loop_live.len));
for (loop_live) |alive| data.live_set.putAssumeCapacity(alive, {});
log.debug("[{}] %{f}: block live set is {f}", .{ LivenessPass.main_analysis, inst, fmtInstSet(&data.live_set) });
for (breaks) |block_inst| {
// We might break to this block, so include every operand that the block needs alive
const block_scope = data.block_scopes.get(block_inst).?;
var it = block_scope.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
}
log.debug("[{}] %{f}: loop live set is {f}", .{ LivenessPass.main_analysis, inst, fmtInstSet(&data.live_set) });
}
fn analyzeInstLoop(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const extra = a.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(a.air.extra.items[extra.end..][0..extra.data.body_len]);
const gpa = a.gpa;
try analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
switch (pass) {
.loop_analysis => {
var old_breaks = data.breaks.move();
defer old_breaks.deinit(gpa);
var old_live = data.live_set.move();
defer old_live.deinit(gpa);
try analyzeBody(a, pass, data, body);
try writeLoopInfo(a, data, inst, old_breaks, old_live);
},
.main_analysis => {
try resolveLoopLiveSet(a, data, inst);
// Now, `data.live_set` is the operands which must be alive when the loop repeats.
// Move them into a block scope for corresponding `repeat` instructions to notice.
try data.block_scopes.putNoClobber(gpa, inst, .{
.live_set = data.live_set.move(),
});
defer {
log.debug("[{}] %{f}: popped loop block scop", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
}
try analyzeBody(a, pass, data, body);
},
}
}
/// Despite its name, this function is used for analysis of not only `cond_br` instructions, but
/// also `try` and `try_ptr`, which are highly related. The `inst_type` parameter indicates which
/// type of instruction `inst` points to.
fn analyzeInstCondBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
comptime inst_type: enum { cond_br, @"try", try_ptr },
) !void {
const inst_datas = a.air.instructions.items(.data);
const gpa = a.gpa;
const extra = switch (inst_type) {
.cond_br => a.air.extraData(Air.CondBr, inst_datas[@intFromEnum(inst)].pl_op.payload),
.@"try" => a.air.extraData(Air.Try, inst_datas[@intFromEnum(inst)].pl_op.payload),
.try_ptr => a.air.extraData(Air.TryPtr, inst_datas[@intFromEnum(inst)].ty_pl.payload),
};
const condition = switch (inst_type) {
.cond_br, .@"try" => inst_datas[@intFromEnum(inst)].pl_op.operand,
.try_ptr => extra.data.ptr,
};
const then_body: []const Air.Inst.Index = switch (inst_type) {
.cond_br => @ptrCast(a.air.extra.items[extra.end..][0..extra.data.then_body_len]),
else => &.{}, // we won't use this
};
const else_body: []const Air.Inst.Index = @ptrCast(switch (inst_type) {
.cond_br => a.air.extra.items[extra.end + then_body.len ..][0..extra.data.else_body_len],
.@"try", .try_ptr => a.air.extra.items[extra.end..][0..extra.data.body_len],
});
switch (pass) {
.loop_analysis => {
switch (inst_type) {
.cond_br => try analyzeBody(a, pass, data, then_body),
.@"try", .try_ptr => {},
}
try analyzeBody(a, pass, data, else_body);
},
.main_analysis => {
switch (inst_type) {
.cond_br => try analyzeBody(a, pass, data, then_body),
.@"try", .try_ptr => {}, // The "then body" is just the remainder of this block
}
var then_live = data.live_set.move();
defer then_live.deinit(gpa);
try analyzeBody(a, pass, data, else_body);
var else_live = data.live_set.move();
defer else_live.deinit(gpa);
// Operands which are alive in one branch but not the other need to die at the start of
// the peer branch.
var then_mirrored_deaths: std.ArrayListUnmanaged(Air.Inst.Index) = .empty;
defer then_mirrored_deaths.deinit(gpa);
var else_mirrored_deaths: std.ArrayListUnmanaged(Air.Inst.Index) = .empty;
defer else_mirrored_deaths.deinit(gpa);
// Note: this invalidates `else_live`, but expands `then_live` to be their union
{
var it = then_live.keyIterator();
while (it.next()) |key| {
const death = key.*;
if (else_live.remove(death)) continue; // removing makes the loop below faster
// If this is a `try`, the "then body" (rest of the branch) might have
// referenced our result. We want to avoid killing this value in the else branch
// if that's the case, since it only exists in the (fake) then branch.
switch (inst_type) {
.cond_br => {},
.@"try", .try_ptr => if (death == inst) continue,
}
try else_mirrored_deaths.append(gpa, death);
}
// Since we removed common stuff above, `else_live` is now only operands
// which are *only* alive in the else branch
it = else_live.keyIterator();
while (it.next()) |key| {
const death = key.*;
try then_mirrored_deaths.append(gpa, death);
// Make `then_live` contain the full live set (i.e. union of both)
try then_live.put(gpa, death, {});
}
}
log.debug("[{}] %{f}: 'then' branch mirrored deaths are {f}", .{ pass, inst, fmtInstList(then_mirrored_deaths.items) });
log.debug("[{}] %{f}: 'else' branch mirrored deaths are {f}", .{ pass, inst, fmtInstList(else_mirrored_deaths.items) });
data.live_set.deinit(gpa);
data.live_set = then_live.move(); // Really the union of both live sets
log.debug("[{}] %{f}: new live set is {f}", .{ pass, inst, fmtInstSet(&data.live_set) });
// Write the mirrored deaths to `extra`
const then_death_count = @as(u32, @intCast(then_mirrored_deaths.items.len));
const else_death_count = @as(u32, @intCast(else_mirrored_deaths.items.len));
try a.extra.ensureUnusedCapacity(gpa, std.meta.fields(CondBr).len + then_death_count + else_death_count);
const extra_index = a.addExtraAssumeCapacity(CondBr{
.then_death_count = then_death_count,
.else_death_count = else_death_count,
});
a.extra.appendSliceAssumeCapacity(@ptrCast(then_mirrored_deaths.items));
a.extra.appendSliceAssumeCapacity(@ptrCast(else_mirrored_deaths.items));
try a.special.put(gpa, inst, extra_index);
},
}
try analyzeOperands(a, pass, data, inst, .{ condition, .none, .none });
}
fn analyzeInstSwitchBr(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
is_dispatch_loop: bool,
) !void {
const inst_datas = a.air.instructions.items(.data);
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
const condition = pl_op.operand;
const switch_br = a.air.unwrapSwitch(inst);
const gpa = a.gpa;
const ncases = switch_br.cases_len;
switch (pass) {
.loop_analysis => {
var old_breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .empty;
defer old_breaks.deinit(gpa);
var old_live: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .empty;
defer old_live.deinit(gpa);
if (is_dispatch_loop) {
old_breaks = data.breaks.move();
old_live = data.live_set.move();
}
var it = switch_br.iterateCases();
while (it.next()) |case| {
try analyzeBody(a, pass, data, case.body);
}
{ // else
const else_body = it.elseBody();
try analyzeBody(a, pass, data, else_body);
}
if (is_dispatch_loop) {
try writeLoopInfo(a, data, inst, old_breaks, old_live);
}
},
.main_analysis => {
if (is_dispatch_loop) {
try resolveLoopLiveSet(a, data, inst);
try data.block_scopes.putNoClobber(gpa, inst, .{
.live_set = data.live_set.move(),
});
}
defer if (is_dispatch_loop) {
log.debug("[{}] %{f}: popped loop block scop", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
};
// This is, all in all, just a messier version of the `cond_br` logic. If you're trying
// to understand it, I encourage looking at `analyzeInstCondBr` first.
const DeathSet = std.AutoHashMapUnmanaged(Air.Inst.Index, void);
const DeathList = std.ArrayListUnmanaged(Air.Inst.Index);
var case_live_sets = try gpa.alloc(std.AutoHashMapUnmanaged(Air.Inst.Index, void), ncases + 1); // +1 for else
defer gpa.free(case_live_sets);
@memset(case_live_sets, .{});
defer for (case_live_sets) |*live_set| live_set.deinit(gpa);
var case_it = switch_br.iterateCases();
while (case_it.next()) |case| {
try analyzeBody(a, pass, data, case.body);
case_live_sets[case.idx] = data.live_set.move();
}
{ // else
const else_body = case_it.elseBody();
try analyzeBody(a, pass, data, else_body);
case_live_sets[ncases] = data.live_set.move();
}
const mirrored_deaths = try gpa.alloc(DeathList, ncases + 1);
defer gpa.free(mirrored_deaths);
@memset(mirrored_deaths, .{});
defer for (mirrored_deaths) |*md| md.deinit(gpa);
{
var all_alive: DeathSet = .{};
defer all_alive.deinit(gpa);
for (case_live_sets) |*live_set| {
try all_alive.ensureUnusedCapacity(gpa, live_set.count());
var it = live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
all_alive.putAssumeCapacity(alive, {});
}
}
for (mirrored_deaths, case_live_sets) |*mirrored, *live_set| {
var it = all_alive.keyIterator();
while (it.next()) |key| {
const alive = key.*;
if (!live_set.contains(alive)) {
// Should die at the start of this branch
try mirrored.append(gpa, alive);
}
}
}
for (mirrored_deaths, 0..) |mirrored, i| {
log.debug("[{}] %{f}: case {} mirrored deaths are {f}", .{ pass, inst, i, fmtInstList(mirrored.items) });
}
data.live_set.deinit(gpa);
data.live_set = all_alive.move();
log.debug("[{}] %{f}: new live set is {f}", .{ pass, inst, fmtInstSet(&data.live_set) });
}
const else_death_count = @as(u32, @intCast(mirrored_deaths[ncases].items.len));
const extra_index = try a.addExtra(SwitchBr{
.else_death_count = else_death_count,
});
for (mirrored_deaths[0..ncases]) |mirrored| {
const num = @as(u32, @intCast(mirrored.items.len));
try a.extra.ensureUnusedCapacity(gpa, num + 1);
a.extra.appendAssumeCapacity(num);
a.extra.appendSliceAssumeCapacity(@ptrCast(mirrored.items));
}
try a.extra.ensureUnusedCapacity(gpa, else_death_count);
a.extra.appendSliceAssumeCapacity(@ptrCast(mirrored_deaths[ncases].items));
try a.special.put(gpa, inst, extra_index);
},
}
try analyzeOperands(a, pass, data, inst, .{ condition, .none, .none });
}
fn AnalyzeBigOperands(comptime pass: LivenessPass) type {
return struct {
a: *Analysis,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
operands_remaining: u32,
small: [bpi - 1]Air.Inst.Ref = .{.none} ** (bpi - 1),
extra_tombs: []u32,
// Only used in `LivenessPass.main_analysis`
will_die_immediately: bool,
const Self = @This();
fn init(
a: *Analysis,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
total_operands: usize,
) !Self {
const extra_operands = @as(u32, @intCast(total_operands)) -| (bpi - 1);
const max_extra_tombs = (extra_operands + 30) / 31;
const extra_tombs: []u32 = switch (pass) {
.loop_analysis => &.{},
.main_analysis => try a.gpa.alloc(u32, max_extra_tombs),
};
errdefer a.gpa.free(extra_tombs);
@memset(extra_tombs, 0);
const will_die_immediately: bool = switch (pass) {
.loop_analysis => false, // track everything, since we don't have full liveness information yet
.main_analysis => !data.live_set.contains(inst),
};
return .{
.a = a,
.data = data,
.inst = inst,
.operands_remaining = @as(u32, @intCast(total_operands)),
.extra_tombs = extra_tombs,
.will_die_immediately = will_die_immediately,
};
}
/// Must be called with operands in reverse order.
fn feed(big: *Self, op_ref: Air.Inst.Ref) !void {
const ip = big.a.intern_pool;
// Note that after this, `operands_remaining` becomes the index of the current operand
big.operands_remaining -= 1;
if (big.operands_remaining < bpi - 1) {
big.small[big.operands_remaining] = op_ref;
return;
}
const operand = op_ref.toIndex() orelse return;
// If our result is unused and the instruction doesn't need to be lowered, backends will
// skip the lowering of this instruction, so we don't want to record uses of operands.
// That way, we can mark as many instructions as possible unused.
if (big.will_die_immediately and !big.a.air.mustLower(big.inst, ip)) return;
const extra_byte = (big.operands_remaining - (bpi - 1)) / 31;
const extra_bit = @as(u5, @intCast(big.operands_remaining - (bpi - 1) - extra_byte * 31));
const gpa = big.a.gpa;
switch (pass) {
.loop_analysis => {
_ = try big.data.live_set.put(gpa, operand, {});
},
.main_analysis => {
if ((try big.data.live_set.fetchPut(gpa, operand, {})) == null) {
log.debug("[{}] %{f}: added %{f} to live set (operand dies here)", .{ pass, big.inst, operand });
big.extra_tombs[extra_byte] |= @as(u32, 1) << extra_bit;
}
},
}
}
fn finish(big: *Self) !void {
const gpa = big.a.gpa;
std.debug.assert(big.operands_remaining == 0);
switch (pass) {
.loop_analysis => {},
.main_analysis => {
// Note that the MSB is set on the final tomb to indicate the terminal element. This
// allows for an optimisation where we only add as many extra tombs as are needed to
// represent the dying operands. Each pass modifies operand bits and so needs to write
// back, so let's figure out how many extra tombs we really need. Note that we always
// keep at least one.
var num: usize = big.extra_tombs.len;
while (num > 1) {
if (@as(u31, @truncate(big.extra_tombs[num - 1])) != 0) {
// Some operand dies here
break;
}
num -= 1;
}
// Mark final tomb
big.extra_tombs[num - 1] |= @as(u32, 1) << 31;
const extra_tombs = big.extra_tombs[0..num];
const extra_index = @as(u32, @intCast(big.a.extra.items.len));
try big.a.extra.appendSlice(gpa, extra_tombs);
try big.a.special.put(gpa, big.inst, extra_index);
},
}
try analyzeOperands(big.a, pass, big.data, big.inst, big.small);
}
fn deinit(big: *Self) void {
big.a.gpa.free(big.extra_tombs);
}
};
}
fn fmtInstSet(set: *const std.AutoHashMapUnmanaged(Air.Inst.Index, void)) FmtInstSet {
return .{ .set = set };
}
const FmtInstSet = struct {
set: *const std.AutoHashMapUnmanaged(Air.Inst.Index, void),
pub fn format(val: FmtInstSet, w: *Writer) Writer.Error!void {
if (val.set.count() == 0) {
try w.writeAll("[no instructions]");
return;
}
var it = val.set.keyIterator();
try w.print("%{f}", .{it.next().?.*});
while (it.next()) |key| {
try w.print(" %{f}", .{key.*});
}
}
};
fn fmtInstList(list: []const Air.Inst.Index) FmtInstList {
return .{ .list = list };
}
const FmtInstList = struct {
list: []const Air.Inst.Index,
pub fn format(val: FmtInstList, w: *Writer) Writer.Error!void {
if (val.list.len == 0) {
try w.writeAll("[no instructions]");
return;
}
try w.print("%{f}", .{val.list[0]});
for (val.list[1..]) |inst| {
try w.print(" %{f}", .{inst});
}
}
};
|