aboutsummaryrefslogtreecommitdiff
path: root/src-self-hosted/Module.zig
blob: 10127627cae15b87169905b91f75474319aa03c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
const std = @import("std");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const ArrayListUnmanaged = std.ArrayListUnmanaged;
const Value = @import("value.zig").Value;
const Type = @import("type.zig").Type;
const TypedValue = @import("TypedValue.zig");
const assert = std.debug.assert;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Target = std.Target;
const Package = @import("Package.zig");
const link = @import("link.zig");
const ir = @import("ir.zig");
const zir = @import("zir.zig");
const Module = @This();
const Inst = ir.Inst;

/// General-purpose allocator.
allocator: *Allocator,
/// Pointer to externally managed resource.
root_pkg: *Package,
/// Module owns this resource.
root_scope: *Scope.ZIRModule,
bin_file: link.ElfFile,
/// It's rare for a decl to be exported, so we save memory by having a sparse map of
/// Decl pointers to details about them being exported.
/// The Export memory is owned by the `export_owners` table; the slice itself is owned by this table.
decl_exports: std.AutoHashMap(*Decl, []*Export),
/// This models the Decls that perform exports, so that `decl_exports` can be updated when a Decl
/// is modified. Note that the key of this table is not the Decl being exported, but the Decl that
/// is performing the export of another Decl.
/// This table owns the Export memory.
export_owners: std.AutoHashMap(*Decl, []*Export),
/// Maps fully qualified namespaced names to the Decl struct for them.
decl_table: std.AutoHashMap(Decl.Hash, *Decl),

optimize_mode: std.builtin.Mode,
link_error_flags: link.ElfFile.ErrorFlags = link.ElfFile.ErrorFlags{},

work_queue: std.fifo.LinearFifo(WorkItem, .Dynamic),

/// We optimize memory usage for a compilation with no compile errors by storing the
/// error messages and mapping outside of `Decl`.
/// The ErrorMsg memory is owned by the decl, using Module's allocator.
/// Note that a Decl can succeed but the Fn it represents can fail. In this case,
/// a Decl can have a failed_decls entry but have analysis status of success.
failed_decls: std.AutoHashMap(*Decl, *ErrorMsg),
/// Using a map here for consistency with the other fields here.
/// The ErrorMsg memory is owned by the `Scope.ZIRModule`, using Module's allocator.
failed_files: std.AutoHashMap(*Scope.ZIRModule, *ErrorMsg),
/// Using a map here for consistency with the other fields here.
/// The ErrorMsg memory is owned by the `Export`, using Module's allocator.
failed_exports: std.AutoHashMap(*Export, *ErrorMsg),

pub const WorkItem = union(enum) {
    /// Write the machine code for a Decl to the output file.
    codegen_decl: *Decl,
};

pub const Export = struct {
    options: std.builtin.ExportOptions,
    /// Byte offset into the file that contains the export directive.
    src: usize,
    /// Represents the position of the export, if any, in the output file.
    link: link.ElfFile.Export,
    /// The Decl that performs the export. Note that this is *not* the Decl being exported.
    owner_decl: *Decl,
    status: enum {
        in_progress,
        failed,
        /// Indicates that the failure was due to a temporary issue, such as an I/O error
        /// when writing to the output file. Retrying the export may succeed.
        failed_retryable,
        complete,
    },
};

pub const Decl = struct {
    /// This name is relative to the containing namespace of the decl. It uses a null-termination
    /// to save bytes, since there can be a lot of decls in a compilation. The null byte is not allowed
    /// in symbol names, because executable file formats use null-terminated strings for symbol names.
    /// All Decls have names, even values that are not bound to a zig namespace. This is necessary for
    /// mapping them to an address in the output file.
    /// Memory owned by this decl, using Module's allocator.
    name: [*:0]const u8,
    /// The direct parent container of the Decl. This field will need to get more fleshed out when
    /// self-hosted supports proper struct types and Zig AST => ZIR.
    /// Reference to externally owned memory.
    scope: *Scope.ZIRModule,
    /// Byte offset into the source file that contains this declaration.
    /// This is the base offset that src offsets within this Decl are relative to.
    src: usize,
    /// The most recent value of the Decl after a successful semantic analysis.
    /// The tag for this union is determined by the tag value of the analysis field.
    typed_value: union {
        never_succeeded: void,
        most_recent: TypedValue.Managed,
    },
    /// Represents the "shallow" analysis status. For example, for decls that are functions,
    /// the function type is analyzed with this set to `in_progress`, however, the semantic
    /// analysis of the function body is performed with this value set to `success`. Functions
    /// have their own analysis status field.
    analysis: enum {
        initial_in_progress,
        /// This Decl might be OK but it depends on another one which did not successfully complete
        /// semantic analysis. This Decl never had a value computed.
        initial_dependency_failure,
        /// Semantic analysis failure. This Decl never had a value computed.
        /// There will be a corresponding ErrorMsg in Module.failed_decls.
        initial_sema_failure,
        /// In this case the `typed_value.most_recent` can still be accessed.
        /// There will be a corresponding ErrorMsg in Module.failed_decls.
        codegen_failure,
        /// In this case the `typed_value.most_recent` can still be accessed.
        /// There will be a corresponding ErrorMsg in Module.failed_decls.
        /// This indicates the failure was something like running out of disk space,
        /// and attempting codegen again may succeed.
        codegen_failure_retryable,
        /// This Decl might be OK but it depends on another one which did not successfully complete
        /// semantic analysis. There is a most recent value available.
        repeat_dependency_failure,
        /// Semantic anlaysis failure, but the `typed_value.most_recent` can be accessed.
        /// There will be a corresponding ErrorMsg in Module.failed_decls.
        repeat_sema_failure,
        /// Completed successfully before; the `typed_value.most_recent` can be accessed, and
        /// new semantic analysis is in progress.
        repeat_in_progress,
        /// Everything is done and updated.
        complete,
    },

    /// Represents the position of the code in the output file.
    /// This is populated regardless of semantic analysis and code generation.
    link: link.ElfFile.Decl = link.ElfFile.Decl.empty,

    /// The shallow set of other decls whose typed_value could possibly change if this Decl's
    /// typed_value is modified.
    /// TODO look into using a lightweight map/set data structure rather than a linear array.
    dependants: ArrayListUnmanaged(*Decl) = ArrayListUnmanaged(*Decl){},

    contents_hash: Hash,

    pub fn destroy(self: *Decl, allocator: *Allocator) void {
        allocator.free(mem.spanZ(self.name));
        if (self.typedValueManaged()) |tvm| {
            tvm.deinit(allocator);
        }
        allocator.destroy(self);
    }

    pub const Hash = [16]u8;

    /// If the name is small enough, it is used directly as the hash.
    /// If it is long, blake3 hash is computed.
    pub fn hashSimpleName(name: []const u8) Hash {
        var out: Hash = undefined;
        if (name.len <= Hash.len) {
            mem.copy(u8, &out, name);
            mem.set(u8, out[name.len..], 0);
        } else {
            std.crypto.Blake3.hash(name, &out);
        }
        return out;
    }

    /// Must generate unique bytes with no collisions with other decls.
    /// The point of hashing here is only to limit the number of bytes of
    /// the unique identifier to a fixed size (16 bytes).
    pub fn fullyQualifiedNameHash(self: Decl) Hash {
        // Right now we only have ZIRModule as the source. So this is simply the
        // relative name of the decl.
        return hashSimpleName(mem.spanZ(u8, self.name));
    }

    pub fn typedValue(self: *Decl) error{AnalysisFail}!TypedValue {
        const tvm = self.typedValueManaged() orelse return error.AnalysisFail;
        return tvm.typed_value;
    }

    pub fn value(self: *Decl) error{AnalysisFail}!Value {
        return (try self.typedValue()).val;
    }

    pub fn dump(self: *Decl) void {
        const loc = std.zig.findLineColumn(self.scope.source.bytes, self.src);
        std.debug.warn("{}:{}:{} name={} status={}", .{
            self.scope.sub_file_path,
            loc.line + 1,
            loc.column + 1,
            mem.spanZ(self.name),
            @tagName(self.analysis),
        });
        if (self.typedValueManaged()) |tvm| {
            std.debug.warn(" ty={} val={}", .{ tvm.typed_value.ty, tvm.typed_value.val });
        }
        std.debug.warn("\n", .{});
    }

    fn typedValueManaged(self: *Decl) ?*TypedValue.Managed {
        switch (self.analysis) {
            .initial_in_progress,
            .initial_dependency_failure,
            .initial_sema_failure,
            => return null,
            .codegen_failure,
            .codegen_failure_retryable,
            .repeat_dependency_failure,
            .repeat_sema_failure,
            .repeat_in_progress,
            .complete,
            => return &self.typed_value.most_recent,
        }
    }
};

/// Fn struct memory is owned by the Decl's TypedValue.Managed arena allocator.
pub const Fn = struct {
    /// This memory owned by the Decl's TypedValue.Managed arena allocator.
    fn_type: Type,
    analysis: union(enum) {
        /// The value is the source instruction.
        queued: *zir.Inst.Fn,
        in_progress: *Analysis,
        /// There will be a corresponding ErrorMsg in Module.failed_decls
        sema_failure,
        /// This Fn might be OK but it depends on another Decl which did not successfully complete
        /// semantic analysis.
        dependency_failure,
        success: Body,
    },

    /// This memory is temporary and points to stack memory for the duration
    /// of Fn analysis.
    pub const Analysis = struct {
        inner_block: Scope.Block,
        /// TODO Performance optimization idea: instead of this inst_table,
        /// use a field in the zir.Inst instead to track corresponding instructions
        inst_table: std.AutoHashMap(*zir.Inst, *Inst),
        needed_inst_capacity: usize,
    };
};

pub const Scope = struct {
    tag: Tag,

    pub fn cast(base: *Scope, comptime T: type) ?*T {
        if (base.tag != T.base_tag)
            return null;

        return @fieldParentPtr(T, "base", base);
    }

    /// Asserts the scope has a parent which is a DeclAnalysis and
    /// returns the arena Allocator.
    pub fn arena(self: *Scope) *Allocator {
        switch (self.tag) {
            .block => return self.cast(Block).?.arena,
            .decl => return &self.cast(DeclAnalysis).?.arena.allocator,
            .zir_module => return &self.cast(ZIRModule).?.contents.module.arena.allocator,
        }
    }

    /// Asserts the scope has a parent which is a DeclAnalysis and
    /// returns the Decl.
    pub fn decl(self: *Scope) *Decl {
        switch (self.tag) {
            .block => return self.cast(Block).?.decl,
            .decl => return self.cast(DeclAnalysis).?.decl,
            .zir_module => unreachable,
        }
    }

    /// Asserts the scope has a parent which is a ZIRModule and
    /// returns it.
    pub fn namespace(self: *Scope) *ZIRModule {
        switch (self.tag) {
            .block => return self.cast(Block).?.decl.scope,
            .decl => return self.cast(DeclAnalysis).?.decl.scope,
            .zir_module => return self.cast(ZIRModule).?,
        }
    }

    pub fn dumpInst(self: *Scope, inst: *Inst) void {
        const zir_module = self.namespace();
        const loc = std.zig.findLineColumn(zir_module.source.bytes, inst.src);
        std.debug.warn("{}:{}:{}: {}: ty={}\n", .{
            zir_module.sub_file_path,
            loc.line + 1,
            loc.column + 1,
            @tagName(inst.tag),
            inst.ty,
        });
    }

    pub const Tag = enum {
        zir_module,
        block,
        decl,
    };

    pub const ZIRModule = struct {
        pub const base_tag: Tag = .zir_module;
        base: Scope = Scope{ .tag = base_tag },
        /// Relative to the owning package's root_src_dir.
        /// Reference to external memory, not owned by ZIRModule.
        sub_file_path: []const u8,
        source: union {
            unloaded: void,
            bytes: [:0]const u8,
        },
        contents: union {
            not_available: void,
            module: *zir.Module,
        },
        status: enum {
            never_loaded,
            unloaded_success,
            unloaded_parse_failure,
            unloaded_sema_failure,
            loaded_parse_failure,
            loaded_sema_failure,
            loaded_success,
        },

        pub fn unload(self: *ZIRModule, allocator: *Allocator) void {
            switch (self.status) {
                .never_loaded,
                .unloaded_parse_failure,
                .unloaded_sema_failure,
                .unloaded_success,
                => {},

                .loaded_success => {
                    allocator.free(self.source.bytes);
                    self.contents.module.deinit(allocator);
                    allocator.destroy(self.contents.module);
                    self.status = .unloaded_success;
                },
                .loaded_sema_failure => {
                    allocator.free(self.source.bytes);
                    self.contents.module.deinit(allocator);
                    allocator.destroy(self.contents.module);
                    self.status = .unloaded_sema_failure;
                },
                .loaded_parse_failure => {
                    allocator.free(self.source.bytes);
                    self.status = .unloaded_parse_failure;
                },
            }
        }

        pub fn deinit(self: *ZIRModule, allocator: *Allocator) void {
            self.unload(allocator);
            self.* = undefined;
        }

        pub fn dumpSrc(self: *ZIRModule, src: usize) void {
            const loc = std.zig.findLineColumn(self.source.bytes, src);
            std.debug.warn("{}:{}:{}\n", .{ self.sub_file_path, loc.line + 1, loc.column + 1 });
        }
    };

    /// This is a temporary structure, references to it are valid only
    /// during semantic analysis of the block.
    pub const Block = struct {
        pub const base_tag: Tag = .block;
        base: Scope = Scope{ .tag = base_tag },
        func: *Fn,
        decl: *Decl,
        instructions: ArrayListUnmanaged(*Inst),
        /// Points to the arena allocator of DeclAnalysis
        arena: *Allocator,
    };

    /// This is a temporary structure, references to it are valid only
    /// during semantic analysis of the decl.
    pub const DeclAnalysis = struct {
        pub const base_tag: Tag = .decl;
        base: Scope = Scope{ .tag = base_tag },
        decl: *Decl,
        arena: std.heap.ArenaAllocator,
    };
};

pub const Body = struct {
    instructions: []*Inst,
};

pub const AllErrors = struct {
    arena: std.heap.ArenaAllocator.State,
    list: []const Message,

    pub const Message = struct {
        src_path: []const u8,
        line: usize,
        column: usize,
        byte_offset: usize,
        msg: []const u8,
    };

    pub fn deinit(self: *AllErrors, allocator: *Allocator) void {
        self.arena.promote(allocator).deinit();
    }

    fn add(
        arena: *std.heap.ArenaAllocator,
        errors: *std.ArrayList(Message),
        sub_file_path: []const u8,
        source: []const u8,
        simple_err_msg: ErrorMsg,
    ) !void {
        const loc = std.zig.findLineColumn(source, simple_err_msg.byte_offset);
        try errors.append(.{
            .src_path = try arena.allocator.dupe(u8, sub_file_path),
            .msg = try arena.allocator.dupe(u8, simple_err_msg.msg),
            .byte_offset = simple_err_msg.byte_offset,
            .line = loc.line,
            .column = loc.column,
        });
    }
};

pub const InitOptions = struct {
    target: std.Target,
    root_pkg: *Package,
    output_mode: std.builtin.OutputMode,
    bin_file_dir: ?std.fs.Dir = null,
    bin_file_path: []const u8,
    link_mode: ?std.builtin.LinkMode = null,
    object_format: ?std.builtin.ObjectFormat = null,
    optimize_mode: std.builtin.Mode = .Debug,
};

pub fn init(gpa: *Allocator, options: InitOptions) !Module {
    const root_scope = try gpa.create(Scope.ZIRModule);
    errdefer gpa.destroy(root_scope);

    root_scope.* = .{
        .sub_file_path = options.root_pkg.root_src_path,
        .source = .{ .unloaded = {} },
        .contents = .{ .not_available = {} },
        .status = .never_loaded,
    };

    const bin_file_dir = options.bin_file_dir orelse std.fs.cwd();
    var bin_file = try link.openBinFilePath(gpa, bin_file_dir, options.bin_file_path, .{
        .target = options.target,
        .output_mode = options.output_mode,
        .link_mode = options.link_mode orelse .Static,
        .object_format = options.object_format orelse options.target.getObjectFormat(),
    });
    errdefer bin_file.deinit();

    return Module{
        .allocator = gpa,
        .root_pkg = options.root_pkg,
        .root_scope = root_scope,
        .bin_file = bin_file,
        .optimize_mode = options.optimize_mode,
        .decl_table = std.AutoHashMap(Decl.Hash, *Decl).init(gpa),
        .decl_exports = std.AutoHashMap(*Decl, []*Export).init(gpa),
        .export_owners = std.AutoHashMap(*Decl, []*Export).init(gpa),
        .failed_decls = std.AutoHashMap(*Decl, *ErrorMsg).init(gpa),
        .failed_files = std.AutoHashMap(*Scope.ZIRModule, *ErrorMsg).init(gpa),
        .failed_exports = std.AutoHashMap(*Export, *ErrorMsg).init(gpa),
        .work_queue = std.fifo.LinearFifo(WorkItem, .Dynamic).init(gpa),
    };
}

pub fn deinit(self: *Module) void {
    self.bin_file.deinit();
    const allocator = self.allocator;
    self.work_queue.deinit();
    {
        var it = self.decl_table.iterator();
        while (it.next()) |kv| {
            kv.value.destroy(allocator);
        }
        self.decl_table.deinit();
    }
    {
        var it = self.failed_decls.iterator();
        while (it.next()) |kv| {
            kv.value.destroy(allocator);
        }
        self.failed_decls.deinit();
    }
    {
        var it = self.failed_files.iterator();
        while (it.next()) |kv| {
            kv.value.destroy(allocator);
        }
        self.failed_files.deinit();
    }
    {
        var it = self.failed_exports.iterator();
        while (it.next()) |kv| {
            kv.value.destroy(allocator);
        }
        self.failed_exports.deinit();
    }
    {
        var it = self.decl_exports.iterator();
        while (it.next()) |kv| {
            const export_list = kv.value;
            allocator.free(export_list);
        }
        self.decl_exports.deinit();
    }
    {
        var it = self.export_owners.iterator();
        while (it.next()) |kv| {
            const export_list = kv.value;
            for (export_list) |exp| {
                allocator.destroy(exp);
            }
            allocator.free(export_list);
        }
        self.export_owners.deinit();
    }
    {
        self.root_scope.deinit(allocator);
        allocator.destroy(self.root_scope);
    }
    self.* = undefined;
}

pub fn target(self: Module) std.Target {
    return self.bin_file.options.target;
}

/// Detect changes to source files, perform semantic analysis, and update the output files.
pub fn update(self: *Module) !void {
    // TODO Use the cache hash file system to detect which source files changed.
    // Here we simulate a full cache miss.
    // Analyze the root source file now.
    self.analyzeRoot(self.root_scope) catch |err| switch (err) {
        error.AnalysisFail => {
            assert(self.totalErrorCount() != 0);
        },
        else => |e| return e,
    };

    try self.performAllTheWork();

    // Unload all the source files from memory.
    self.root_scope.unload(self.allocator);

    try self.bin_file.flush();
    self.link_error_flags = self.bin_file.error_flags;
}

pub fn totalErrorCount(self: *Module) usize {
    return self.failed_decls.size +
        self.failed_files.size +
        self.failed_exports.size +
        @boolToInt(self.link_error_flags.no_entry_point_found);
}

pub fn getAllErrorsAlloc(self: *Module) !AllErrors {
    var arena = std.heap.ArenaAllocator.init(self.allocator);
    errdefer arena.deinit();

    var errors = std.ArrayList(AllErrors.Message).init(self.allocator);
    defer errors.deinit();

    {
        var it = self.failed_files.iterator();
        while (it.next()) |kv| {
            const scope = kv.key;
            const err_msg = kv.value;
            const source = scope.source.bytes;
            try AllErrors.add(&arena, &errors, scope.sub_file_path, source, err_msg.*);
        }
    }
    {
        var it = self.failed_decls.iterator();
        while (it.next()) |kv| {
            const decl = kv.key;
            const err_msg = kv.value;
            const source = decl.scope.source.bytes;
            try AllErrors.add(&arena, &errors, decl.scope.sub_file_path, source, err_msg.*);
        }
    }
    {
        var it = self.failed_exports.iterator();
        while (it.next()) |kv| {
            const decl = kv.key.owner_decl;
            const err_msg = kv.value;
            const source = decl.scope.source.bytes;
            try AllErrors.add(&arena, &errors, decl.scope.sub_file_path, source, err_msg.*);
        }
    }

    if (self.link_error_flags.no_entry_point_found) {
        try errors.append(.{
            .src_path = self.root_pkg.root_src_path,
            .line = 0,
            .column = 0,
            .byte_offset = 0,
            .msg = try std.fmt.allocPrint(&arena.allocator, "no entry point found", .{}),
        });
    }

    assert(errors.items.len == self.totalErrorCount());

    return AllErrors{
        .arena = arena.state,
        .list = try arena.allocator.dupe(AllErrors.Message, errors.items),
    };
}

const InnerError = error{ OutOfMemory, AnalysisFail };

pub fn performAllTheWork(self: *Module) error{OutOfMemory}!void {
    while (self.work_queue.readItem()) |work_item| switch (work_item) {
        .codegen_decl => |decl| switch (decl.analysis) {
            .initial_in_progress,
            .repeat_in_progress,
            => unreachable,

            .initial_sema_failure,
            .repeat_sema_failure,
            .codegen_failure,
            .initial_dependency_failure,
            .repeat_dependency_failure,
            => continue,

            .complete, .codegen_failure_retryable => {
                if (decl.typed_value.most_recent.typed_value.val.cast(Value.Payload.Function)) |payload| {
                    switch (payload.func.analysis) {
                        .queued => self.analyzeFnBody(decl, payload.func) catch |err| switch (err) {
                            error.AnalysisFail => {
                                if (payload.func.analysis == .queued) {
                                    payload.func.analysis = .dependency_failure;
                                }
                                continue;
                            },
                            else => |e| return e,
                        },
                        .in_progress => unreachable,
                        .sema_failure, .dependency_failure => continue,
                        .success => {},
                    }
                }

                assert(decl.typed_value.most_recent.typed_value.ty.hasCodeGenBits());

                self.bin_file.updateDecl(self, decl) catch |err| switch (err) {
                    error.OutOfMemory => return error.OutOfMemory,
                    error.AnalysisFail => {
                        decl.analysis = .repeat_dependency_failure;
                    },
                    else => {
                        try self.failed_decls.ensureCapacity(self.failed_decls.size + 1);
                        self.failed_decls.putAssumeCapacityNoClobber(decl, try ErrorMsg.create(
                            self.allocator,
                            decl.src,
                            "unable to codegen: {}",
                            .{@errorName(err)},
                        ));
                        decl.analysis = .codegen_failure_retryable;
                    },
                };
            },
        },
    };
}

fn getSrcModule(self: *Module, root_scope: *Scope.ZIRModule) !*zir.Module {
    switch (root_scope.status) {
        .never_loaded, .unloaded_success => {
            try self.failed_files.ensureCapacity(self.failed_files.size + 1);

            var keep_source = false;
            const source = try self.root_pkg.root_src_dir.readFileAllocOptions(
                self.allocator,
                self.root_pkg.root_src_path,
                std.math.maxInt(u32),
                1,
                0,
            );
            defer if (!keep_source) self.allocator.free(source);

            var keep_zir_module = false;
            const zir_module = try self.allocator.create(zir.Module);
            defer if (!keep_zir_module) self.allocator.destroy(zir_module);

            zir_module.* = try zir.parse(self.allocator, source);
            defer if (!keep_zir_module) zir_module.deinit(self.allocator);

            if (zir_module.error_msg) |src_err_msg| {
                self.failed_files.putAssumeCapacityNoClobber(
                    root_scope,
                    try ErrorMsg.create(self.allocator, src_err_msg.byte_offset, "{}", .{src_err_msg.msg}),
                );
                root_scope.status = .loaded_parse_failure;
                root_scope.source = .{ .bytes = source };
                keep_source = true;
                return error.AnalysisFail;
            }

            root_scope.status = .loaded_success;
            root_scope.source = .{ .bytes = source };
            keep_source = true;
            root_scope.contents = .{ .module = zir_module };
            keep_zir_module = true;

            return zir_module;
        },

        .unloaded_parse_failure,
        .unloaded_sema_failure,
        .loaded_parse_failure,
        .loaded_sema_failure,
        => return error.AnalysisFail,
        .loaded_success => return root_scope.contents.module,
    }
}

fn analyzeRoot(self: *Module, root_scope: *Scope.ZIRModule) !void {
    // TODO use the cache to identify, from the modified source files, the decls which have
    // changed based on the span of memory that represents the decl in the re-parsed source file.
    // Use the cached dependency graph to recursively determine the set of decls which need
    // regeneration.
    // Here we simulate adding a source file which was previously not part of the compilation,
    // which means scanning the decls looking for exports.
    // TODO also identify decls that need to be deleted.
    switch (root_scope.status) {
        .never_loaded => {
            const src_module = try self.getSrcModule(root_scope);

            // Here we ensure enough queue capacity to store all the decls, so that later we can use
            // appendAssumeCapacity.
            try self.work_queue.ensureUnusedCapacity(src_module.decls.len);

            for (src_module.decls) |decl| {
                if (decl.cast(zir.Inst.Export)) |export_inst| {
                    _ = try self.resolveDecl(&root_scope.base, &export_inst.base, link.ElfFile.Decl.empty);
                }
            }
        },

        .unloaded_parse_failure,
        .unloaded_sema_failure,
        .loaded_parse_failure,
        .loaded_sema_failure,
        .loaded_success,
        .unloaded_success,
        => {
            const src_module = try self.getSrcModule(root_scope);

            // Look for changed decls.
            for (src_module.decls) |src_decl| {
                const name_hash = Decl.hashSimpleName(src_decl.name);
                if (self.decl_table.get(name_hash)) |kv| {
                    const decl = kv.value;
                    const new_contents_hash = Decl.hashSimpleName(src_decl.contents);
                    if (!mem.eql(u8, &new_contents_hash, &decl.contents_hash)) {
                        // TODO recursive dependency management
                        std.debug.warn("noticed that '{}' changed\n", .{src_decl.name});
                        self.decl_table.removeAssertDiscard(name_hash);
                        const saved_link = decl.link;
                        decl.destroy(self.allocator);
                        if (self.export_owners.getValue(decl)) |exports| {
                            @panic("TODO handle updating a decl that does an export");
                        }
                        const new_decl = self.resolveDecl(
                            &root_scope.base,
                            src_decl,
                            saved_link,
                        ) catch |err| switch (err) {
                            error.OutOfMemory => return error.OutOfMemory,
                            error.AnalysisFail => continue,
                        };
                        if (self.decl_exports.remove(decl)) |entry| {
                            self.decl_exports.putAssumeCapacityNoClobber(new_decl, entry.value);
                        }
                    }
                } else if (src_decl.cast(zir.Inst.Export)) |export_inst| {
                    _ = try self.resolveDecl(&root_scope.base, &export_inst.base, link.ElfFile.Decl.empty);
                }
            }
        },
    }
}

fn analyzeFnBody(self: *Module, decl: *Decl, func: *Fn) !void {
    // Use the Decl's arena for function memory.
    var arena = decl.typed_value.most_recent.arena.?.promote(self.allocator);
    defer decl.typed_value.most_recent.arena.?.* = arena.state;
    var analysis: Fn.Analysis = .{
        .inner_block = .{
            .func = func,
            .decl = decl,
            .instructions = .{},
            .arena = &arena.allocator,
        },
        .needed_inst_capacity = 0,
        .inst_table = std.AutoHashMap(*zir.Inst, *Inst).init(self.allocator),
    };
    defer analysis.inner_block.instructions.deinit(self.allocator);
    defer analysis.inst_table.deinit();

    const fn_inst = func.analysis.queued;
    func.analysis = .{ .in_progress = &analysis };

    try self.analyzeBody(&analysis.inner_block.base, fn_inst.positionals.body);

    func.analysis = .{
        .success = .{
            .instructions = try arena.allocator.dupe(*Inst, analysis.inner_block.instructions.items),
        },
    };
}

fn resolveDecl(
    self: *Module,
    scope: *Scope,
    old_inst: *zir.Inst,
    bin_file_link: link.ElfFile.Decl,
) InnerError!*Decl {
    const hash = Decl.hashSimpleName(old_inst.name);
    if (self.decl_table.get(hash)) |kv| {
        return kv.value;
    } else {
        const new_decl = blk: {
            try self.decl_table.ensureCapacity(self.decl_table.size + 1);
            const new_decl = try self.allocator.create(Decl);
            errdefer self.allocator.destroy(new_decl);
            const name = try mem.dupeZ(self.allocator, u8, old_inst.name);
            errdefer self.allocator.free(name);
            new_decl.* = .{
                .name = name,
                .scope = scope.namespace(),
                .src = old_inst.src,
                .typed_value = .{ .never_succeeded = {} },
                .analysis = .initial_in_progress,
                .contents_hash = Decl.hashSimpleName(old_inst.contents),
                .link = bin_file_link,
            };
            self.decl_table.putAssumeCapacityNoClobber(hash, new_decl);
            break :blk new_decl;
        };

        var decl_scope: Scope.DeclAnalysis = .{
            .decl = new_decl,
            .arena = std.heap.ArenaAllocator.init(self.allocator),
        };
        errdefer decl_scope.arena.deinit();

        const typed_value = self.analyzeInstConst(&decl_scope.base, old_inst) catch |err| switch (err) {
            error.OutOfMemory => return error.OutOfMemory,
            error.AnalysisFail => {
                switch (new_decl.analysis) {
                    .initial_in_progress => new_decl.analysis = .initial_dependency_failure,
                    .repeat_in_progress => new_decl.analysis = .repeat_dependency_failure,
                    else => {},
                }
                return error.AnalysisFail;
            },
        };
        const arena_state = try decl_scope.arena.allocator.create(std.heap.ArenaAllocator.State);

        const has_codegen_bits = typed_value.ty.hasCodeGenBits();
        if (has_codegen_bits) {
            // We don't fully codegen the decl until later, but we do need to reserve a global
            // offset table index for it. This allows us to codegen decls out of dependency order,
            // increasing how many computations can be done in parallel.
            try self.bin_file.allocateDeclIndexes(new_decl);
        }

        arena_state.* = decl_scope.arena.state;

        new_decl.typed_value = .{
            .most_recent = .{
                .typed_value = typed_value,
                .arena = arena_state,
            },
        };
        new_decl.analysis = .complete;
        if (has_codegen_bits) {
            // We ensureCapacity when scanning for decls.
            self.work_queue.writeItemAssumeCapacity(.{ .codegen_decl = new_decl });
        }
        return new_decl;
    }
}

fn resolveCompleteDecl(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!*Decl {
    const decl = try self.resolveDecl(scope, old_inst, link.ElfFile.Decl.empty);
    switch (decl.analysis) {
        .initial_in_progress => unreachable,
        .repeat_in_progress => unreachable,
        .initial_dependency_failure,
        .repeat_dependency_failure,
        .initial_sema_failure,
        .repeat_sema_failure,
        .codegen_failure,
        .codegen_failure_retryable,
        => return error.AnalysisFail,

        .complete => return decl,
    }
}

fn resolveInst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!*Inst {
    if (scope.cast(Scope.Block)) |block| {
        if (block.func.analysis.in_progress.inst_table.get(old_inst)) |kv| {
            return kv.value;
        }
    }

    const decl = try self.resolveCompleteDecl(scope, old_inst);
    const decl_ref = try self.analyzeDeclRef(scope, old_inst.src, decl);
    return self.analyzeDeref(scope, old_inst.src, decl_ref, old_inst.src);
}

fn requireRuntimeBlock(self: *Module, scope: *Scope, src: usize) !*Scope.Block {
    return scope.cast(Scope.Block) orelse
        return self.fail(scope, src, "instruction illegal outside function body", .{});
}

fn resolveInstConst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!TypedValue {
    const new_inst = try self.resolveInst(scope, old_inst);
    const val = try self.resolveConstValue(scope, new_inst);
    return TypedValue{
        .ty = new_inst.ty,
        .val = val,
    };
}

fn resolveConstValue(self: *Module, scope: *Scope, base: *Inst) !Value {
    return (try self.resolveDefinedValue(scope, base)) orelse
        return self.fail(scope, base.src, "unable to resolve comptime value", .{});
}

fn resolveDefinedValue(self: *Module, scope: *Scope, base: *Inst) !?Value {
    if (base.value()) |val| {
        if (val.isUndef()) {
            return self.fail(scope, base.src, "use of undefined value here causes undefined behavior", .{});
        }
        return val;
    }
    return null;
}

fn resolveConstString(self: *Module, scope: *Scope, old_inst: *zir.Inst) ![]u8 {
    const new_inst = try self.resolveInst(scope, old_inst);
    const wanted_type = Type.initTag(.const_slice_u8);
    const coerced_inst = try self.coerce(scope, wanted_type, new_inst);
    const val = try self.resolveConstValue(scope, coerced_inst);
    return val.toAllocatedBytes(scope.arena());
}

fn resolveType(self: *Module, scope: *Scope, old_inst: *zir.Inst) !Type {
    const new_inst = try self.resolveInst(scope, old_inst);
    const wanted_type = Type.initTag(.@"type");
    const coerced_inst = try self.coerce(scope, wanted_type, new_inst);
    const val = try self.resolveConstValue(scope, coerced_inst);
    return val.toType();
}

fn analyzeExport(self: *Module, scope: *Scope, export_inst: *zir.Inst.Export) InnerError!void {
    try self.decl_exports.ensureCapacity(self.decl_exports.size + 1);
    try self.export_owners.ensureCapacity(self.export_owners.size + 1);
    const symbol_name = try self.resolveConstString(scope, export_inst.positionals.symbol_name);
    const exported_decl = try self.resolveCompleteDecl(scope, export_inst.positionals.value);
    const typed_value = exported_decl.typed_value.most_recent.typed_value;
    switch (typed_value.ty.zigTypeTag()) {
        .Fn => {},
        else => return self.fail(
            scope,
            export_inst.positionals.value.src,
            "unable to export type '{}'",
            .{typed_value.ty},
        ),
    }
    const new_export = try self.allocator.create(Export);
    errdefer self.allocator.destroy(new_export);

    const owner_decl = scope.decl();

    new_export.* = .{
        .options = .{ .name = symbol_name },
        .src = export_inst.base.src,
        .link = .{},
        .owner_decl = owner_decl,
        .status = .in_progress,
    };

    // Add to export_owners table.
    const eo_gop = self.export_owners.getOrPut(owner_decl) catch unreachable;
    if (!eo_gop.found_existing) {
        eo_gop.kv.value = &[0]*Export{};
    }
    eo_gop.kv.value = try self.allocator.realloc(eo_gop.kv.value, eo_gop.kv.value.len + 1);
    eo_gop.kv.value[eo_gop.kv.value.len - 1] = new_export;
    errdefer eo_gop.kv.value = self.allocator.shrink(eo_gop.kv.value, eo_gop.kv.value.len - 1);

    // Add to exported_decl table.
    const de_gop = self.decl_exports.getOrPut(exported_decl) catch unreachable;
    if (!de_gop.found_existing) {
        de_gop.kv.value = &[0]*Export{};
    }
    de_gop.kv.value = try self.allocator.realloc(de_gop.kv.value, de_gop.kv.value.len + 1);
    de_gop.kv.value[de_gop.kv.value.len - 1] = new_export;
    errdefer de_gop.kv.value = self.allocator.shrink(de_gop.kv.value, de_gop.kv.value.len - 1);

    self.bin_file.updateDeclExports(self, exported_decl, de_gop.kv.value) catch |err| switch (err) {
        error.OutOfMemory => return error.OutOfMemory,
        else => {
            try self.failed_exports.ensureCapacity(self.failed_exports.size + 1);
            self.failed_exports.putAssumeCapacityNoClobber(new_export, try ErrorMsg.create(
                self.allocator,
                export_inst.base.src,
                "unable to export: {}",
                .{@errorName(err)},
            ));
            new_export.status = .failed_retryable;
        },
    };
}

/// TODO should not need the cast on the last parameter at the callsites
fn addNewInstArgs(
    self: *Module,
    block: *Scope.Block,
    src: usize,
    ty: Type,
    comptime T: type,
    args: Inst.Args(T),
) !*Inst {
    const inst = try self.addNewInst(block, src, ty, T);
    inst.args = args;
    return &inst.base;
}

fn addNewInst(self: *Module, block: *Scope.Block, src: usize, ty: Type, comptime T: type) !*T {
    const inst = try block.arena.create(T);
    inst.* = .{
        .base = .{
            .tag = T.base_tag,
            .ty = ty,
            .src = src,
        },
        .args = undefined,
    };
    try block.instructions.append(self.allocator, &inst.base);
    return inst;
}

fn constInst(self: *Module, scope: *Scope, src: usize, typed_value: TypedValue) !*Inst {
    const const_inst = try scope.arena().create(Inst.Constant);
    const_inst.* = .{
        .base = .{
            .tag = Inst.Constant.base_tag,
            .ty = typed_value.ty,
            .src = src,
        },
        .val = typed_value.val,
    };
    return &const_inst.base;
}

fn constStr(self: *Module, scope: *Scope, src: usize, str: []const u8) !*Inst {
    const ty_payload = try scope.arena().create(Type.Payload.Array_u8_Sentinel0);
    ty_payload.* = .{ .len = str.len };

    const bytes_payload = try scope.arena().create(Value.Payload.Bytes);
    bytes_payload.* = .{ .data = str };

    return self.constInst(scope, src, .{
        .ty = Type.initPayload(&ty_payload.base),
        .val = Value.initPayload(&bytes_payload.base),
    });
}

fn constType(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst {
    return self.constInst(scope, src, .{
        .ty = Type.initTag(.type),
        .val = try ty.toValue(scope.arena()),
    });
}

fn constVoid(self: *Module, scope: *Scope, src: usize) !*Inst {
    return self.constInst(scope, src, .{
        .ty = Type.initTag(.void),
        .val = Value.initTag(.the_one_possible_value),
    });
}

fn constUndef(self: *Module, scope: *Scope, src: usize, ty: Type) !*Inst {
    return self.constInst(scope, src, .{
        .ty = ty,
        .val = Value.initTag(.undef),
    });
}

fn constBool(self: *Module, scope: *Scope, src: usize, v: bool) !*Inst {
    return self.constInst(scope, src, .{
        .ty = Type.initTag(.bool),
        .val = ([2]Value{ Value.initTag(.bool_false), Value.initTag(.bool_true) })[@boolToInt(v)],
    });
}

fn constIntUnsigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: u64) !*Inst {
    const int_payload = try scope.arena().create(Value.Payload.Int_u64);
    int_payload.* = .{ .int = int };

    return self.constInst(scope, src, .{
        .ty = ty,
        .val = Value.initPayload(&int_payload.base),
    });
}

fn constIntSigned(self: *Module, scope: *Scope, src: usize, ty: Type, int: i64) !*Inst {
    const int_payload = try scope.arena().create(Value.Payload.Int_i64);
    int_payload.* = .{ .int = int };

    return self.constInst(scope, src, .{
        .ty = ty,
        .val = Value.initPayload(&int_payload.base),
    });
}

fn constIntBig(self: *Module, scope: *Scope, src: usize, ty: Type, big_int: BigIntConst) !*Inst {
    const val_payload = if (big_int.positive) blk: {
        if (big_int.to(u64)) |x| {
            return self.constIntUnsigned(scope, src, ty, x);
        } else |err| switch (err) {
            error.NegativeIntoUnsigned => unreachable,
            error.TargetTooSmall => {}, // handled below
        }
        const big_int_payload = try scope.arena().create(Value.Payload.IntBigPositive);
        big_int_payload.* = .{ .limbs = big_int.limbs };
        break :blk &big_int_payload.base;
    } else blk: {
        if (big_int.to(i64)) |x| {
            return self.constIntSigned(scope, src, ty, x);
        } else |err| switch (err) {
            error.NegativeIntoUnsigned => unreachable,
            error.TargetTooSmall => {}, // handled below
        }
        const big_int_payload = try scope.arena().create(Value.Payload.IntBigNegative);
        big_int_payload.* = .{ .limbs = big_int.limbs };
        break :blk &big_int_payload.base;
    };

    return self.constInst(scope, src, .{
        .ty = ty,
        .val = Value.initPayload(val_payload),
    });
}

fn analyzeInstConst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!TypedValue {
    const new_inst = try self.analyzeInst(scope, old_inst);
    return TypedValue{
        .ty = new_inst.ty,
        .val = try self.resolveConstValue(scope, new_inst),
    };
}

fn analyzeInst(self: *Module, scope: *Scope, old_inst: *zir.Inst) InnerError!*Inst {
    switch (old_inst.tag) {
        .breakpoint => return self.analyzeInstBreakpoint(scope, old_inst.cast(zir.Inst.Breakpoint).?),
        .call => return self.analyzeInstCall(scope, old_inst.cast(zir.Inst.Call).?),
        .declref => return self.analyzeInstDeclRef(scope, old_inst.cast(zir.Inst.DeclRef).?),
        .str => {
            const bytes = old_inst.cast(zir.Inst.Str).?.positionals.bytes;
            // The bytes references memory inside the ZIR module, which can get deallocated
            // after semantic analysis is complete. We need the memory to be in the Decl's arena.
            const arena_bytes = try scope.arena().dupe(u8, bytes);
            return self.constStr(scope, old_inst.src, arena_bytes);
        },
        .int => {
            const big_int = old_inst.cast(zir.Inst.Int).?.positionals.int;
            return self.constIntBig(scope, old_inst.src, Type.initTag(.comptime_int), big_int);
        },
        .ptrtoint => return self.analyzeInstPtrToInt(scope, old_inst.cast(zir.Inst.PtrToInt).?),
        .fieldptr => return self.analyzeInstFieldPtr(scope, old_inst.cast(zir.Inst.FieldPtr).?),
        .deref => return self.analyzeInstDeref(scope, old_inst.cast(zir.Inst.Deref).?),
        .as => return self.analyzeInstAs(scope, old_inst.cast(zir.Inst.As).?),
        .@"asm" => return self.analyzeInstAsm(scope, old_inst.cast(zir.Inst.Asm).?),
        .@"unreachable" => return self.analyzeInstUnreachable(scope, old_inst.cast(zir.Inst.Unreachable).?),
        .@"return" => return self.analyzeInstRet(scope, old_inst.cast(zir.Inst.Return).?),
        .@"fn" => return self.analyzeInstFn(scope, old_inst.cast(zir.Inst.Fn).?),
        .@"export" => {
            try self.analyzeExport(scope, old_inst.cast(zir.Inst.Export).?);
            return self.constVoid(scope, old_inst.src);
        },
        .primitive => return self.analyzeInstPrimitive(scope, old_inst.cast(zir.Inst.Primitive).?),
        .ref => return self.analyzeInstRef(scope, old_inst.cast(zir.Inst.Ref).?),
        .fntype => return self.analyzeInstFnType(scope, old_inst.cast(zir.Inst.FnType).?),
        .intcast => return self.analyzeInstIntCast(scope, old_inst.cast(zir.Inst.IntCast).?),
        .bitcast => return self.analyzeInstBitCast(scope, old_inst.cast(zir.Inst.BitCast).?),
        .elemptr => return self.analyzeInstElemPtr(scope, old_inst.cast(zir.Inst.ElemPtr).?),
        .add => return self.analyzeInstAdd(scope, old_inst.cast(zir.Inst.Add).?),
        .cmp => return self.analyzeInstCmp(scope, old_inst.cast(zir.Inst.Cmp).?),
        .condbr => return self.analyzeInstCondBr(scope, old_inst.cast(zir.Inst.CondBr).?),
        .isnull => return self.analyzeInstIsNull(scope, old_inst.cast(zir.Inst.IsNull).?),
        .isnonnull => return self.analyzeInstIsNonNull(scope, old_inst.cast(zir.Inst.IsNonNull).?),
    }
}

fn analyzeInstBreakpoint(self: *Module, scope: *Scope, inst: *zir.Inst.Breakpoint) InnerError!*Inst {
    const b = try self.requireRuntimeBlock(scope, inst.base.src);
    return self.addNewInstArgs(b, inst.base.src, Type.initTag(.void), Inst.Breakpoint, Inst.Args(Inst.Breakpoint){});
}

fn analyzeInstRef(self: *Module, scope: *Scope, inst: *zir.Inst.Ref) InnerError!*Inst {
    const decl = try self.resolveCompleteDecl(scope, inst.positionals.operand);
    return self.analyzeDeclRef(scope, inst.base.src, decl);
}

fn analyzeInstDeclRef(self: *Module, scope: *Scope, inst: *zir.Inst.DeclRef) InnerError!*Inst {
    const decl_name = try self.resolveConstString(scope, inst.positionals.name);
    // This will need to get more fleshed out when there are proper structs & namespaces.
    const zir_module = scope.namespace();
    for (zir_module.contents.module.decls) |src_decl| {
        if (mem.eql(u8, src_decl.name, decl_name)) {
            const decl = try self.resolveCompleteDecl(scope, src_decl);
            return self.analyzeDeclRef(scope, inst.base.src, decl);
        }
    }
    return self.fail(scope, inst.positionals.name.src, "use of undeclared identifier '{}'", .{decl_name});
}

fn analyzeDeclRef(self: *Module, scope: *Scope, src: usize, decl: *Decl) InnerError!*Inst {
    const decl_tv = try decl.typedValue();
    const ty_payload = try scope.arena().create(Type.Payload.SingleConstPointer);
    ty_payload.* = .{ .pointee_type = decl_tv.ty };
    const val_payload = try scope.arena().create(Value.Payload.DeclRef);
    val_payload.* = .{ .decl = decl };
    return self.constInst(scope, src, .{
        .ty = Type.initPayload(&ty_payload.base),
        .val = Value.initPayload(&val_payload.base),
    });
}

fn analyzeInstCall(self: *Module, scope: *Scope, inst: *zir.Inst.Call) InnerError!*Inst {
    const func = try self.resolveInst(scope, inst.positionals.func);
    if (func.ty.zigTypeTag() != .Fn)
        return self.fail(scope, inst.positionals.func.src, "type '{}' not a function", .{func.ty});

    const cc = func.ty.fnCallingConvention();
    if (cc == .Naked) {
        // TODO add error note: declared here
        return self.fail(
            scope,
            inst.positionals.func.src,
            "unable to call function with naked calling convention",
            .{},
        );
    }
    const call_params_len = inst.positionals.args.len;
    const fn_params_len = func.ty.fnParamLen();
    if (func.ty.fnIsVarArgs()) {
        if (call_params_len < fn_params_len) {
            // TODO add error note: declared here
            return self.fail(
                scope,
                inst.positionals.func.src,
                "expected at least {} arguments, found {}",
                .{ fn_params_len, call_params_len },
            );
        }
        return self.fail(scope, inst.base.src, "TODO implement support for calling var args functions", .{});
    } else if (fn_params_len != call_params_len) {
        // TODO add error note: declared here
        return self.fail(
            scope,
            inst.positionals.func.src,
            "expected {} arguments, found {}",
            .{ fn_params_len, call_params_len },
        );
    }

    if (inst.kw_args.modifier == .compile_time) {
        return self.fail(scope, inst.base.src, "TODO implement comptime function calls", .{});
    }
    if (inst.kw_args.modifier != .auto) {
        return self.fail(scope, inst.base.src, "TODO implement call with modifier {}", .{inst.kw_args.modifier});
    }

    // TODO handle function calls of generic functions

    const fn_param_types = try self.allocator.alloc(Type, fn_params_len);
    defer self.allocator.free(fn_param_types);
    func.ty.fnParamTypes(fn_param_types);

    const casted_args = try scope.arena().alloc(*Inst, fn_params_len);
    for (inst.positionals.args) |src_arg, i| {
        const uncasted_arg = try self.resolveInst(scope, src_arg);
        casted_args[i] = try self.coerce(scope, fn_param_types[i], uncasted_arg);
    }

    const b = try self.requireRuntimeBlock(scope, inst.base.src);
    return self.addNewInstArgs(b, inst.base.src, Type.initTag(.void), Inst.Call, Inst.Args(Inst.Call){
        .func = func,
        .args = casted_args,
    });
}

fn analyzeInstFn(self: *Module, scope: *Scope, fn_inst: *zir.Inst.Fn) InnerError!*Inst {
    const fn_type = try self.resolveType(scope, fn_inst.positionals.fn_type);
    const new_func = try scope.arena().create(Fn);
    new_func.* = .{
        .fn_type = fn_type,
        .analysis = .{ .queued = fn_inst },
    };
    const fn_payload = try scope.arena().create(Value.Payload.Function);
    fn_payload.* = .{ .func = new_func };
    return self.constInst(scope, fn_inst.base.src, .{
        .ty = fn_type,
        .val = Value.initPayload(&fn_payload.base),
    });
}

fn analyzeInstFnType(self: *Module, scope: *Scope, fntype: *zir.Inst.FnType) InnerError!*Inst {
    const return_type = try self.resolveType(scope, fntype.positionals.return_type);

    if (return_type.zigTypeTag() == .NoReturn and
        fntype.positionals.param_types.len == 0 and
        fntype.kw_args.cc == .Unspecified)
    {
        return self.constType(scope, fntype.base.src, Type.initTag(.fn_noreturn_no_args));
    }

    if (return_type.zigTypeTag() == .NoReturn and
        fntype.positionals.param_types.len == 0 and
        fntype.kw_args.cc == .Naked)
    {
        return self.constType(scope, fntype.base.src, Type.initTag(.fn_naked_noreturn_no_args));
    }

    if (return_type.zigTypeTag() == .Void and
        fntype.positionals.param_types.len == 0 and
        fntype.kw_args.cc == .C)
    {
        return self.constType(scope, fntype.base.src, Type.initTag(.fn_ccc_void_no_args));
    }

    return self.fail(scope, fntype.base.src, "TODO implement fntype instruction more", .{});
}

fn analyzeInstPrimitive(self: *Module, scope: *Scope, primitive: *zir.Inst.Primitive) InnerError!*Inst {
    return self.constType(scope, primitive.base.src, primitive.positionals.tag.toType());
}

fn analyzeInstAs(self: *Module, scope: *Scope, as: *zir.Inst.As) InnerError!*Inst {
    const dest_type = try self.resolveType(scope, as.positionals.dest_type);
    const new_inst = try self.resolveInst(scope, as.positionals.value);
    return self.coerce(scope, dest_type, new_inst);
}

fn analyzeInstPtrToInt(self: *Module, scope: *Scope, ptrtoint: *zir.Inst.PtrToInt) InnerError!*Inst {
    const ptr = try self.resolveInst(scope, ptrtoint.positionals.ptr);
    if (ptr.ty.zigTypeTag() != .Pointer) {
        return self.fail(scope, ptrtoint.positionals.ptr.src, "expected pointer, found '{}'", .{ptr.ty});
    }
    // TODO handle known-pointer-address
    const b = try self.requireRuntimeBlock(scope, ptrtoint.base.src);
    const ty = Type.initTag(.usize);
    return self.addNewInstArgs(b, ptrtoint.base.src, ty, Inst.PtrToInt, Inst.Args(Inst.PtrToInt){ .ptr = ptr });
}

fn analyzeInstFieldPtr(self: *Module, scope: *Scope, fieldptr: *zir.Inst.FieldPtr) InnerError!*Inst {
    const object_ptr = try self.resolveInst(scope, fieldptr.positionals.object_ptr);
    const field_name = try self.resolveConstString(scope, fieldptr.positionals.field_name);

    const elem_ty = switch (object_ptr.ty.zigTypeTag()) {
        .Pointer => object_ptr.ty.elemType(),
        else => return self.fail(scope, fieldptr.positionals.object_ptr.src, "expected pointer, found '{}'", .{object_ptr.ty}),
    };
    switch (elem_ty.zigTypeTag()) {
        .Array => {
            if (mem.eql(u8, field_name, "len")) {
                const len_payload = try scope.arena().create(Value.Payload.Int_u64);
                len_payload.* = .{ .int = elem_ty.arrayLen() };

                const ref_payload = try scope.arena().create(Value.Payload.RefVal);
                ref_payload.* = .{ .val = Value.initPayload(&len_payload.base) };

                return self.constInst(scope, fieldptr.base.src, .{
                    .ty = Type.initTag(.single_const_pointer_to_comptime_int),
                    .val = Value.initPayload(&ref_payload.base),
                });
            } else {
                return self.fail(
                    scope,
                    fieldptr.positionals.field_name.src,
                    "no member named '{}' in '{}'",
                    .{ field_name, elem_ty },
                );
            }
        },
        else => return self.fail(scope, fieldptr.base.src, "type '{}' does not support field access", .{elem_ty}),
    }
}

fn analyzeInstIntCast(self: *Module, scope: *Scope, intcast: *zir.Inst.IntCast) InnerError!*Inst {
    const dest_type = try self.resolveType(scope, intcast.positionals.dest_type);
    const new_inst = try self.resolveInst(scope, intcast.positionals.value);

    const dest_is_comptime_int = switch (dest_type.zigTypeTag()) {
        .ComptimeInt => true,
        .Int => false,
        else => return self.fail(
            scope,
            intcast.positionals.dest_type.src,
            "expected integer type, found '{}'",
            .{
                dest_type,
            },
        ),
    };

    switch (new_inst.ty.zigTypeTag()) {
        .ComptimeInt, .Int => {},
        else => return self.fail(
            scope,
            intcast.positionals.value.src,
            "expected integer type, found '{}'",
            .{new_inst.ty},
        ),
    }

    if (dest_is_comptime_int or new_inst.value() != null) {
        return self.coerce(scope, dest_type, new_inst);
    }

    return self.fail(scope, intcast.base.src, "TODO implement analyze widen or shorten int", .{});
}

fn analyzeInstBitCast(self: *Module, scope: *Scope, inst: *zir.Inst.BitCast) InnerError!*Inst {
    const dest_type = try self.resolveType(scope, inst.positionals.dest_type);
    const operand = try self.resolveInst(scope, inst.positionals.operand);
    return self.bitcast(scope, dest_type, operand);
}

fn analyzeInstElemPtr(self: *Module, scope: *Scope, inst: *zir.Inst.ElemPtr) InnerError!*Inst {
    const array_ptr = try self.resolveInst(scope, inst.positionals.array_ptr);
    const uncasted_index = try self.resolveInst(scope, inst.positionals.index);
    const elem_index = try self.coerce(scope, Type.initTag(.usize), uncasted_index);

    if (array_ptr.ty.isSinglePointer() and array_ptr.ty.elemType().zigTypeTag() == .Array) {
        if (array_ptr.value()) |array_ptr_val| {
            if (elem_index.value()) |index_val| {
                // Both array pointer and index are compile-time known.
                const index_u64 = index_val.toUnsignedInt();
                // @intCast here because it would have been impossible to construct a value that
                // required a larger index.
                const elem_ptr = try array_ptr_val.elemPtr(scope.arena(), @intCast(usize, index_u64));

                const type_payload = try scope.arena().create(Type.Payload.SingleConstPointer);
                type_payload.* = .{ .pointee_type = array_ptr.ty.elemType().elemType() };

                return self.constInst(scope, inst.base.src, .{
                    .ty = Type.initPayload(&type_payload.base),
                    .val = elem_ptr,
                });
            }
        }
    }

    return self.fail(scope, inst.base.src, "TODO implement more analyze elemptr", .{});
}

fn analyzeInstAdd(self: *Module, scope: *Scope, inst: *zir.Inst.Add) InnerError!*Inst {
    const lhs = try self.resolveInst(scope, inst.positionals.lhs);
    const rhs = try self.resolveInst(scope, inst.positionals.rhs);

    if (lhs.ty.zigTypeTag() == .Int and rhs.ty.zigTypeTag() == .Int) {
        if (lhs.value()) |lhs_val| {
            if (rhs.value()) |rhs_val| {
                // TODO is this a performance issue? maybe we should try the operation without
                // resorting to BigInt first.
                var lhs_space: Value.BigIntSpace = undefined;
                var rhs_space: Value.BigIntSpace = undefined;
                const lhs_bigint = lhs_val.toBigInt(&lhs_space);
                const rhs_bigint = rhs_val.toBigInt(&rhs_space);
                const limbs = try scope.arena().alloc(
                    std.math.big.Limb,
                    std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
                );
                var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
                result_bigint.add(lhs_bigint, rhs_bigint);
                const result_limbs = result_bigint.limbs[0..result_bigint.len];

                if (!lhs.ty.eql(rhs.ty)) {
                    return self.fail(scope, inst.base.src, "TODO implement peer type resolution", .{});
                }

                const val_payload = if (result_bigint.positive) blk: {
                    const val_payload = try scope.arena().create(Value.Payload.IntBigPositive);
                    val_payload.* = .{ .limbs = result_limbs };
                    break :blk &val_payload.base;
                } else blk: {
                    const val_payload = try scope.arena().create(Value.Payload.IntBigNegative);
                    val_payload.* = .{ .limbs = result_limbs };
                    break :blk &val_payload.base;
                };

                return self.constInst(scope, inst.base.src, .{
                    .ty = lhs.ty,
                    .val = Value.initPayload(val_payload),
                });
            }
        }
    }

    return self.fail(scope, inst.base.src, "TODO implement more analyze add", .{});
}

fn analyzeInstDeref(self: *Module, scope: *Scope, deref: *zir.Inst.Deref) InnerError!*Inst {
    const ptr = try self.resolveInst(scope, deref.positionals.ptr);
    return self.analyzeDeref(scope, deref.base.src, ptr, deref.positionals.ptr.src);
}

fn analyzeDeref(self: *Module, scope: *Scope, src: usize, ptr: *Inst, ptr_src: usize) InnerError!*Inst {
    const elem_ty = switch (ptr.ty.zigTypeTag()) {
        .Pointer => ptr.ty.elemType(),
        else => return self.fail(scope, ptr_src, "expected pointer, found '{}'", .{ptr.ty}),
    };
    if (ptr.value()) |val| {
        return self.constInst(scope, src, .{
            .ty = elem_ty,
            .val = try val.pointerDeref(scope.arena()),
        });
    }

    return self.fail(scope, src, "TODO implement runtime deref", .{});
}

fn analyzeInstAsm(self: *Module, scope: *Scope, assembly: *zir.Inst.Asm) InnerError!*Inst {
    const return_type = try self.resolveType(scope, assembly.positionals.return_type);
    const asm_source = try self.resolveConstString(scope, assembly.positionals.asm_source);
    const output = if (assembly.kw_args.output) |o| try self.resolveConstString(scope, o) else null;

    const inputs = try scope.arena().alloc([]const u8, assembly.kw_args.inputs.len);
    const clobbers = try scope.arena().alloc([]const u8, assembly.kw_args.clobbers.len);
    const args = try scope.arena().alloc(*Inst, assembly.kw_args.args.len);

    for (inputs) |*elem, i| {
        elem.* = try self.resolveConstString(scope, assembly.kw_args.inputs[i]);
    }
    for (clobbers) |*elem, i| {
        elem.* = try self.resolveConstString(scope, assembly.kw_args.clobbers[i]);
    }
    for (args) |*elem, i| {
        const arg = try self.resolveInst(scope, assembly.kw_args.args[i]);
        elem.* = try self.coerce(scope, Type.initTag(.usize), arg);
    }

    const b = try self.requireRuntimeBlock(scope, assembly.base.src);
    return self.addNewInstArgs(b, assembly.base.src, return_type, Inst.Assembly, Inst.Args(Inst.Assembly){
        .asm_source = asm_source,
        .is_volatile = assembly.kw_args.@"volatile",
        .output = output,
        .inputs = inputs,
        .clobbers = clobbers,
        .args = args,
    });
}

fn analyzeInstCmp(self: *Module, scope: *Scope, inst: *zir.Inst.Cmp) InnerError!*Inst {
    const lhs = try self.resolveInst(scope, inst.positionals.lhs);
    const rhs = try self.resolveInst(scope, inst.positionals.rhs);
    const op = inst.positionals.op;

    const is_equality_cmp = switch (op) {
        .eq, .neq => true,
        else => false,
    };
    const lhs_ty_tag = lhs.ty.zigTypeTag();
    const rhs_ty_tag = rhs.ty.zigTypeTag();
    if (is_equality_cmp and lhs_ty_tag == .Null and rhs_ty_tag == .Null) {
        // null == null, null != null
        return self.constBool(scope, inst.base.src, op == .eq);
    } else if (is_equality_cmp and
        ((lhs_ty_tag == .Null and rhs_ty_tag == .Optional) or
        rhs_ty_tag == .Null and lhs_ty_tag == .Optional))
    {
        // comparing null with optionals
        const opt_operand = if (lhs_ty_tag == .Optional) lhs else rhs;
        if (opt_operand.value()) |opt_val| {
            const is_null = opt_val.isNull();
            return self.constBool(scope, inst.base.src, if (op == .eq) is_null else !is_null);
        }
        const b = try self.requireRuntimeBlock(scope, inst.base.src);
        switch (op) {
            .eq => return self.addNewInstArgs(
                b,
                inst.base.src,
                Type.initTag(.bool),
                Inst.IsNull,
                Inst.Args(Inst.IsNull){ .operand = opt_operand },
            ),
            .neq => return self.addNewInstArgs(
                b,
                inst.base.src,
                Type.initTag(.bool),
                Inst.IsNonNull,
                Inst.Args(Inst.IsNonNull){ .operand = opt_operand },
            ),
            else => unreachable,
        }
    } else if (is_equality_cmp and
        ((lhs_ty_tag == .Null and rhs.ty.isCPtr()) or (rhs_ty_tag == .Null and lhs.ty.isCPtr())))
    {
        return self.fail(scope, inst.base.src, "TODO implement C pointer cmp", .{});
    } else if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) {
        const non_null_type = if (lhs_ty_tag == .Null) rhs.ty else lhs.ty;
        return self.fail(scope, inst.base.src, "comparison of '{}' with null", .{non_null_type});
    } else if (is_equality_cmp and
        ((lhs_ty_tag == .EnumLiteral and rhs_ty_tag == .Union) or
        (rhs_ty_tag == .EnumLiteral and lhs_ty_tag == .Union)))
    {
        return self.fail(scope, inst.base.src, "TODO implement equality comparison between a union's tag value and an enum literal", .{});
    } else if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) {
        if (!is_equality_cmp) {
            return self.fail(scope, inst.base.src, "{} operator not allowed for errors", .{@tagName(op)});
        }
        return self.fail(scope, inst.base.src, "TODO implement equality comparison between errors", .{});
    } else if (lhs.ty.isNumeric() and rhs.ty.isNumeric()) {
        // This operation allows any combination of integer and float types, regardless of the
        // signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for
        // numeric types.
        return self.cmpNumeric(scope, inst.base.src, lhs, rhs, op);
    }
    return self.fail(scope, inst.base.src, "TODO implement more cmp analysis", .{});
}

fn analyzeInstIsNull(self: *Module, scope: *Scope, inst: *zir.Inst.IsNull) InnerError!*Inst {
    const operand = try self.resolveInst(scope, inst.positionals.operand);
    return self.analyzeIsNull(scope, inst.base.src, operand, true);
}

fn analyzeInstIsNonNull(self: *Module, scope: *Scope, inst: *zir.Inst.IsNonNull) InnerError!*Inst {
    const operand = try self.resolveInst(scope, inst.positionals.operand);
    return self.analyzeIsNull(scope, inst.base.src, operand, false);
}

fn analyzeInstCondBr(self: *Module, scope: *Scope, inst: *zir.Inst.CondBr) InnerError!*Inst {
    const uncasted_cond = try self.resolveInst(scope, inst.positionals.condition);
    const cond = try self.coerce(scope, Type.initTag(.bool), uncasted_cond);

    if (try self.resolveDefinedValue(scope, cond)) |cond_val| {
        const body = if (cond_val.toBool()) &inst.positionals.true_body else &inst.positionals.false_body;
        try self.analyzeBody(scope, body.*);
        return self.constVoid(scope, inst.base.src);
    }

    const parent_block = try self.requireRuntimeBlock(scope, inst.base.src);

    var true_block: Scope.Block = .{
        .func = parent_block.func,
        .decl = parent_block.decl,
        .instructions = .{},
        .arena = parent_block.arena,
    };
    defer true_block.instructions.deinit(self.allocator);
    try self.analyzeBody(&true_block.base, inst.positionals.true_body);

    var false_block: Scope.Block = .{
        .func = parent_block.func,
        .decl = parent_block.decl,
        .instructions = .{},
        .arena = parent_block.arena,
    };
    defer false_block.instructions.deinit(self.allocator);
    try self.analyzeBody(&false_block.base, inst.positionals.false_body);

    return self.addNewInstArgs(parent_block, inst.base.src, Type.initTag(.void), Inst.CondBr, Inst.Args(Inst.CondBr){
        .condition = cond,
        .true_body = .{ .instructions = try scope.arena().dupe(*Inst, true_block.instructions.items) },
        .false_body = .{ .instructions = try scope.arena().dupe(*Inst, false_block.instructions.items) },
    });
}

fn wantSafety(self: *Module, scope: *Scope) bool {
    return switch (self.optimize_mode) {
        .Debug => true,
        .ReleaseSafe => true,
        .ReleaseFast => false,
        .ReleaseSmall => false,
    };
}

fn analyzeInstUnreachable(self: *Module, scope: *Scope, unreach: *zir.Inst.Unreachable) InnerError!*Inst {
    const b = try self.requireRuntimeBlock(scope, unreach.base.src);
    if (self.wantSafety(scope)) {
        // TODO Once we have a panic function to call, call it here instead of this.
        _ = try self.addNewInstArgs(b, unreach.base.src, Type.initTag(.void), Inst.Breakpoint, {});
    }
    return self.addNewInstArgs(b, unreach.base.src, Type.initTag(.noreturn), Inst.Unreach, {});
}

fn analyzeInstRet(self: *Module, scope: *Scope, inst: *zir.Inst.Return) InnerError!*Inst {
    const b = try self.requireRuntimeBlock(scope, inst.base.src);
    return self.addNewInstArgs(b, inst.base.src, Type.initTag(.noreturn), Inst.Ret, {});
}

fn analyzeBody(self: *Module, scope: *Scope, body: zir.Module.Body) !void {
    if (scope.cast(Scope.Block)) |b| {
        const analysis = b.func.analysis.in_progress;
        analysis.needed_inst_capacity += body.instructions.len;
        try analysis.inst_table.ensureCapacity(analysis.needed_inst_capacity);
        for (body.instructions) |src_inst| {
            const new_inst = try self.analyzeInst(scope, src_inst);
            analysis.inst_table.putAssumeCapacityNoClobber(src_inst, new_inst);
        }
    } else {
        for (body.instructions) |src_inst| {
            _ = try self.analyzeInst(scope, src_inst);
        }
    }
}

fn analyzeIsNull(
    self: *Module,
    scope: *Scope,
    src: usize,
    operand: *Inst,
    invert_logic: bool,
) InnerError!*Inst {
    return self.fail(scope, src, "TODO implement analysis of isnull and isnotnull", .{});
}

/// Asserts that lhs and rhs types are both numeric.
fn cmpNumeric(
    self: *Module,
    scope: *Scope,
    src: usize,
    lhs: *Inst,
    rhs: *Inst,
    op: std.math.CompareOperator,
) !*Inst {
    assert(lhs.ty.isNumeric());
    assert(rhs.ty.isNumeric());

    const lhs_ty_tag = lhs.ty.zigTypeTag();
    const rhs_ty_tag = rhs.ty.zigTypeTag();

    if (lhs_ty_tag == .Vector and rhs_ty_tag == .Vector) {
        if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) {
            return self.fail(scope, src, "vector length mismatch: {} and {}", .{
                lhs.ty.arrayLen(),
                rhs.ty.arrayLen(),
            });
        }
        return self.fail(scope, src, "TODO implement support for vectors in cmpNumeric", .{});
    } else if (lhs_ty_tag == .Vector or rhs_ty_tag == .Vector) {
        return self.fail(scope, src, "mixed scalar and vector operands to comparison operator: '{}' and '{}'", .{
            lhs.ty,
            rhs.ty,
        });
    }

    if (lhs.value()) |lhs_val| {
        if (rhs.value()) |rhs_val| {
            return self.constBool(scope, src, Value.compare(lhs_val, op, rhs_val));
        }
    }

    // TODO handle comparisons against lazy zero values
    // Some values can be compared against zero without being runtime known or without forcing
    // a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to
    // always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout
    // of this function if we don't need to.

    // It must be a runtime comparison.
    const b = try self.requireRuntimeBlock(scope, src);
    // For floats, emit a float comparison instruction.
    const lhs_is_float = switch (lhs_ty_tag) {
        .Float, .ComptimeFloat => true,
        else => false,
    };
    const rhs_is_float = switch (rhs_ty_tag) {
        .Float, .ComptimeFloat => true,
        else => false,
    };
    if (lhs_is_float and rhs_is_float) {
        // Implicit cast the smaller one to the larger one.
        const dest_type = x: {
            if (lhs_ty_tag == .ComptimeFloat) {
                break :x rhs.ty;
            } else if (rhs_ty_tag == .ComptimeFloat) {
                break :x lhs.ty;
            }
            if (lhs.ty.floatBits(self.target()) >= rhs.ty.floatBits(self.target())) {
                break :x lhs.ty;
            } else {
                break :x rhs.ty;
            }
        };
        const casted_lhs = try self.coerce(scope, dest_type, lhs);
        const casted_rhs = try self.coerce(scope, dest_type, rhs);
        return self.addNewInstArgs(b, src, dest_type, Inst.Cmp, Inst.Args(Inst.Cmp){
            .lhs = casted_lhs,
            .rhs = casted_rhs,
            .op = op,
        });
    }
    // For mixed unsigned integer sizes, implicit cast both operands to the larger integer.
    // For mixed signed and unsigned integers, implicit cast both operands to a signed
    // integer with + 1 bit.
    // For mixed floats and integers, extract the integer part from the float, cast that to
    // a signed integer with mantissa bits + 1, and if there was any non-integral part of the float,
    // add/subtract 1.
    const lhs_is_signed = if (lhs.value()) |lhs_val|
        lhs_val.compareWithZero(.lt)
    else
        (lhs.ty.isFloat() or lhs.ty.isSignedInt());
    const rhs_is_signed = if (rhs.value()) |rhs_val|
        rhs_val.compareWithZero(.lt)
    else
        (rhs.ty.isFloat() or rhs.ty.isSignedInt());
    const dest_int_is_signed = lhs_is_signed or rhs_is_signed;

    var dest_float_type: ?Type = null;

    var lhs_bits: usize = undefined;
    if (lhs.value()) |lhs_val| {
        if (lhs_val.isUndef())
            return self.constUndef(scope, src, Type.initTag(.bool));
        const is_unsigned = if (lhs_is_float) x: {
            var bigint_space: Value.BigIntSpace = undefined;
            var bigint = try lhs_val.toBigInt(&bigint_space).toManaged(self.allocator);
            defer bigint.deinit();
            const zcmp = lhs_val.orderAgainstZero();
            if (lhs_val.floatHasFraction()) {
                switch (op) {
                    .eq => return self.constBool(scope, src, false),
                    .neq => return self.constBool(scope, src, true),
                    else => {},
                }
                if (zcmp == .lt) {
                    try bigint.addScalar(bigint.toConst(), -1);
                } else {
                    try bigint.addScalar(bigint.toConst(), 1);
                }
            }
            lhs_bits = bigint.toConst().bitCountTwosComp();
            break :x (zcmp != .lt);
        } else x: {
            lhs_bits = lhs_val.intBitCountTwosComp();
            break :x (lhs_val.orderAgainstZero() != .lt);
        };
        lhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
    } else if (lhs_is_float) {
        dest_float_type = lhs.ty;
    } else {
        const int_info = lhs.ty.intInfo(self.target());
        lhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed);
    }

    var rhs_bits: usize = undefined;
    if (rhs.value()) |rhs_val| {
        if (rhs_val.isUndef())
            return self.constUndef(scope, src, Type.initTag(.bool));
        const is_unsigned = if (rhs_is_float) x: {
            var bigint_space: Value.BigIntSpace = undefined;
            var bigint = try rhs_val.toBigInt(&bigint_space).toManaged(self.allocator);
            defer bigint.deinit();
            const zcmp = rhs_val.orderAgainstZero();
            if (rhs_val.floatHasFraction()) {
                switch (op) {
                    .eq => return self.constBool(scope, src, false),
                    .neq => return self.constBool(scope, src, true),
                    else => {},
                }
                if (zcmp == .lt) {
                    try bigint.addScalar(bigint.toConst(), -1);
                } else {
                    try bigint.addScalar(bigint.toConst(), 1);
                }
            }
            rhs_bits = bigint.toConst().bitCountTwosComp();
            break :x (zcmp != .lt);
        } else x: {
            rhs_bits = rhs_val.intBitCountTwosComp();
            break :x (rhs_val.orderAgainstZero() != .lt);
        };
        rhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
    } else if (rhs_is_float) {
        dest_float_type = rhs.ty;
    } else {
        const int_info = rhs.ty.intInfo(self.target());
        rhs_bits = int_info.bits + @boolToInt(!int_info.signed and dest_int_is_signed);
    }

    const dest_type = if (dest_float_type) |ft| ft else blk: {
        const max_bits = std.math.max(lhs_bits, rhs_bits);
        const casted_bits = std.math.cast(u16, max_bits) catch |err| switch (err) {
            error.Overflow => return self.fail(scope, src, "{} exceeds maximum integer bit count", .{max_bits}),
        };
        break :blk try self.makeIntType(scope, dest_int_is_signed, casted_bits);
    };
    const casted_lhs = try self.coerce(scope, dest_type, lhs);
    const casted_rhs = try self.coerce(scope, dest_type, lhs);

    return self.addNewInstArgs(b, src, dest_type, Inst.Cmp, Inst.Args(Inst.Cmp){
        .lhs = casted_lhs,
        .rhs = casted_rhs,
        .op = op,
    });
}

fn makeIntType(self: *Module, scope: *Scope, signed: bool, bits: u16) !Type {
    if (signed) {
        const int_payload = try scope.arena().create(Type.Payload.IntSigned);
        int_payload.* = .{ .bits = bits };
        return Type.initPayload(&int_payload.base);
    } else {
        const int_payload = try scope.arena().create(Type.Payload.IntUnsigned);
        int_payload.* = .{ .bits = bits };
        return Type.initPayload(&int_payload.base);
    }
}

fn coerce(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
    // If the types are the same, we can return the operand.
    if (dest_type.eql(inst.ty))
        return inst;

    const in_memory_result = coerceInMemoryAllowed(dest_type, inst.ty);
    if (in_memory_result == .ok) {
        return self.bitcast(scope, dest_type, inst);
    }

    // *[N]T to []T
    if (inst.ty.isSinglePointer() and dest_type.isSlice() and
        (!inst.ty.pointerIsConst() or dest_type.pointerIsConst()))
    {
        const array_type = inst.ty.elemType();
        const dst_elem_type = dest_type.elemType();
        if (array_type.zigTypeTag() == .Array and
            coerceInMemoryAllowed(dst_elem_type, array_type.elemType()) == .ok)
        {
            return self.coerceArrayPtrToSlice(scope, dest_type, inst);
        }
    }

    // comptime_int to fixed-width integer
    if (inst.ty.zigTypeTag() == .ComptimeInt and dest_type.zigTypeTag() == .Int) {
        // The representation is already correct; we only need to make sure it fits in the destination type.
        const val = inst.value().?; // comptime_int always has comptime known value
        if (!val.intFitsInType(dest_type, self.target())) {
            return self.fail(scope, inst.src, "type {} cannot represent integer value {}", .{ inst.ty, val });
        }
        return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
    }

    // integer widening
    if (inst.ty.zigTypeTag() == .Int and dest_type.zigTypeTag() == .Int) {
        const src_info = inst.ty.intInfo(self.target());
        const dst_info = dest_type.intInfo(self.target());
        if (src_info.signed == dst_info.signed and dst_info.bits >= src_info.bits) {
            if (inst.value()) |val| {
                return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
            } else {
                return self.fail(scope, inst.src, "TODO implement runtime integer widening", .{});
            }
        } else {
            return self.fail(scope, inst.src, "TODO implement more int widening {} to {}", .{ inst.ty, dest_type });
        }
    }

    return self.fail(scope, inst.src, "TODO implement type coercion from {} to {}", .{ inst.ty, dest_type });
}

fn bitcast(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
    if (inst.value()) |val| {
        // Keep the comptime Value representation; take the new type.
        return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
    }
    // TODO validate the type size and other compile errors
    const b = try self.requireRuntimeBlock(scope, inst.src);
    return self.addNewInstArgs(b, inst.src, dest_type, Inst.BitCast, Inst.Args(Inst.BitCast){ .operand = inst });
}

fn coerceArrayPtrToSlice(self: *Module, scope: *Scope, dest_type: Type, inst: *Inst) !*Inst {
    if (inst.value()) |val| {
        // The comptime Value representation is compatible with both types.
        return self.constInst(scope, inst.src, .{ .ty = dest_type, .val = val });
    }
    return self.fail(scope, inst.src, "TODO implement coerceArrayPtrToSlice runtime instruction", .{});
}

fn fail(self: *Module, scope: *Scope, src: usize, comptime format: []const u8, args: var) InnerError {
    @setCold(true);
    try self.failed_decls.ensureCapacity(self.failed_decls.size + 1);
    try self.failed_files.ensureCapacity(self.failed_files.size + 1);
    const err_msg = try ErrorMsg.create(self.allocator, src, format, args);
    switch (scope.tag) {
        .decl => {
            const decl = scope.cast(Scope.DeclAnalysis).?.decl;
            switch (decl.analysis) {
                .initial_in_progress => decl.analysis = .initial_sema_failure,
                .repeat_in_progress => decl.analysis = .repeat_sema_failure,
                else => unreachable,
            }
            self.failed_decls.putAssumeCapacityNoClobber(decl, err_msg);
        },
        .block => {
            const block = scope.cast(Scope.Block).?;
            block.func.analysis = .sema_failure;
            self.failed_decls.putAssumeCapacityNoClobber(block.decl, err_msg);
        },
        .zir_module => {
            const zir_module = scope.cast(Scope.ZIRModule).?;
            zir_module.status = .loaded_sema_failure;
            self.failed_files.putAssumeCapacityNoClobber(zir_module, err_msg);
        },
    }
    return error.AnalysisFail;
}

const InMemoryCoercionResult = enum {
    ok,
    no_match,
};

fn coerceInMemoryAllowed(dest_type: Type, src_type: Type) InMemoryCoercionResult {
    if (dest_type.eql(src_type))
        return .ok;

    // TODO: implement more of this function

    return .no_match;
}

pub const ErrorMsg = struct {
    byte_offset: usize,
    msg: []const u8,

    pub fn create(allocator: *Allocator, byte_offset: usize, comptime format: []const u8, args: var) !*ErrorMsg {
        const self = try allocator.create(ErrorMsg);
        errdefer allocator.destroy(self);
        self.* = try init(allocator, byte_offset, format, args);
        return self;
    }

    /// Assumes the ErrorMsg struct and msg were both allocated with allocator.
    pub fn destroy(self: *ErrorMsg, allocator: *Allocator) void {
        self.deinit(allocator);
        allocator.destroy(self);
    }

    pub fn init(allocator: *Allocator, byte_offset: usize, comptime format: []const u8, args: var) !ErrorMsg {
        return ErrorMsg{
            .byte_offset = byte_offset,
            .msg = try std.fmt.allocPrint(allocator, format, args),
        };
    }

    pub fn deinit(self: *ErrorMsg, allocator: *Allocator) void {
        allocator.free(self.msg);
        self.* = undefined;
    }
};