1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
const std = @import("std.zig");
const assert = std.debug.assert;
const testing = std.testing;
const Order = std.math.Order;
pub fn Treap(comptime Key: type, comptime compareFn: anytype) type {
return struct {
const Self = @This();
// Allow for compareFn to be fn(anytype, anytype) anytype
// which allows the convenient use of std.math.order.
fn compare(a: Key, b: Key) Order {
return compareFn(a, b);
}
root: ?*Node = null,
prng: Prng = .{},
/// A customized pseudo random number generator for the treap.
/// This just helps reducing the memory size of the treap itself
/// as std.rand.DefaultPrng requires larger state (while producing better entropy for randomness to be fair).
const Prng = struct {
xorshift: usize = 0,
fn random(self: *Prng, seed: usize) usize {
// Lazily seed the prng state
if (self.xorshift == 0) {
self.xorshift = seed;
}
// Since we're using usize, decide the shifts by the integer's bit width.
const shifts = switch (@bitSizeOf(usize)) {
64 => .{ 13, 7, 17 },
32 => .{ 13, 17, 5 },
16 => .{ 7, 9, 8 },
else => @compileError("platform not supported"),
};
self.xorshift ^= self.xorshift >> shifts[0];
self.xorshift ^= self.xorshift << shifts[1];
self.xorshift ^= self.xorshift >> shifts[2];
assert(self.xorshift != 0);
return self.xorshift;
}
};
/// A Node represents an item or point in the treap with a uniquely associated key.
pub const Node = struct {
key: Key,
priority: usize,
parent: ?*Node,
children: [2]?*Node,
};
/// Returns the smallest Node by key in the treap if there is one.
/// Use `getEntryForExisting()` to replace/remove this Node from the treap.
pub fn getMin(self: Self) ?*Node {
var node = self.root;
while (node) |current| {
node = current.children[0] orelse break;
}
return node;
}
/// Returns the largest Node by key in the treap if there is one.
/// Use `getEntryForExisting()` to replace/remove this Node from the treap.
pub fn getMax(self: Self) ?*Node {
var node = self.root;
while (node) |current| {
node = current.children[1] orelse break;
}
return node;
}
/// Lookup the Entry for the given key in the treap.
/// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
pub fn getEntryFor(self: *Self, key: Key) Entry {
var parent: ?*Node = undefined;
const node = self.find(key, &parent);
return Entry{
.key = key,
.treap = self,
.node = node,
.context = .{ .inserted_under = parent },
};
}
/// Get an entry for a Node that currently exists in the treap.
/// It is undefined behavior if the Node is not currently inserted in the treap.
/// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
pub fn getEntryForExisting(self: *Self, node: *Node) Entry {
assert(node.priority != 0);
return Entry{
.key = node.key,
.treap = self,
.node = node,
.context = .{ .inserted_under = node.parent },
};
}
/// An Entry represents a slot in the treap associated with a given key.
pub const Entry = struct {
/// The associated key for this entry.
key: Key,
/// A reference to the treap this entry is apart of.
treap: *Self,
/// The current node at this entry.
node: ?*Node,
/// The current state of the entry.
context: union(enum) {
/// A find() was called for this entry and the position in the treap is known.
inserted_under: ?*Node,
/// The entry's node was removed from the treap and a lookup must occur again for modification.
removed,
},
/// Update's the Node at this Entry in the treap with the new node.
pub fn set(self: *Entry, new_node: ?*Node) void {
// Update the entry's node reference after updating the treap below.
defer self.node = new_node;
if (self.node) |old| {
if (new_node) |new| {
self.treap.replace(old, new);
return;
}
self.treap.remove(old);
self.context = .removed;
return;
}
if (new_node) |new| {
// A previous treap.remove() could have rebalanced the nodes
// so when inserting after a removal, we have to re-lookup the parent again.
// This lookup shouldn't find a node because we're yet to insert it..
var parent: ?*Node = undefined;
switch (self.context) {
.inserted_under => |p| parent = p,
.removed => assert(self.treap.find(self.key, &parent) == null),
}
self.treap.insert(self.key, parent, new);
self.context = .{ .inserted_under = parent };
}
}
};
fn find(self: Self, key: Key, parent_ref: *?*Node) ?*Node {
var node = self.root;
parent_ref.* = null;
// basic binary search while tracking the parent.
while (node) |current| {
const order = compare(key, current.key);
if (order == .eq) break;
parent_ref.* = current;
node = current.children[@boolToInt(order == .gt)];
}
return node;
}
fn insert(self: *Self, key: Key, parent: ?*Node, node: *Node) void {
// generate a random priority & prepare the node to be inserted into the tree
node.key = key;
node.priority = self.prng.random(@ptrToInt(node));
node.parent = parent;
node.children = [_]?*Node{ null, null };
// point the parent at the new node
const link = if (parent) |p| &p.children[@boolToInt(compare(key, p.key) == .gt)] else &self.root;
assert(link.* == null);
link.* = node;
// rotate the node up into the tree to balance it according to its priority
while (node.parent) |p| {
if (p.priority <= node.priority) break;
const is_right = p.children[1] == node;
assert(p.children[@boolToInt(is_right)] == node);
const rotate_right = !is_right;
self.rotate(p, rotate_right);
}
}
fn replace(self: *Self, old: *Node, new: *Node) void {
// copy over the values from the old node
new.key = old.key;
new.priority = old.priority;
new.parent = old.parent;
new.children = old.children;
// point the parent at the new node
const link = if (old.parent) |p| &p.children[@boolToInt(p.children[1] == old)] else &self.root;
assert(link.* == old);
link.* = new;
// point the children's parent at the new node
for (old.children) |child_node| {
const child = child_node orelse continue;
assert(child.parent == old);
child.parent = new;
}
}
fn remove(self: *Self, node: *Node) void {
// rotate the node down to be a leaf of the tree for removal, respecting priorities.
while (node.children[0] orelse node.children[1]) |_| {
self.rotate(node, rotate_right: {
const right = node.children[1] orelse break :rotate_right true;
const left = node.children[0] orelse break :rotate_right false;
break :rotate_right (left.priority < right.priority);
});
}
// node is a now a leaf; remove by nulling out the parent's reference to it.
const link = if (node.parent) |p| &p.children[@boolToInt(p.children[1] == node)] else &self.root;
assert(link.* == node);
link.* = null;
// clean up after ourselves
node.key = undefined;
node.priority = 0;
node.parent = null;
node.children = [_]?*Node{ null, null };
}
fn rotate(self: *Self, node: *Node, right: bool) void {
// if right, converts the following:
// parent -> (node (target YY adjacent) XX)
// parent -> (target YY (node adjacent XX))
//
// if left (!right), converts the following:
// parent -> (node (target YY adjacent) XX)
// parent -> (target YY (node adjacent XX))
const parent = node.parent;
const target = node.children[@boolToInt(!right)] orelse unreachable;
const adjacent = target.children[@boolToInt(right)];
// rotate the children
target.children[@boolToInt(right)] = node;
node.children[@boolToInt(!right)] = adjacent;
// rotate the parents
node.parent = target;
target.parent = parent;
if (adjacent) |adj| adj.parent = node;
// fix the parent link
const link = if (parent) |p| &p.children[@boolToInt(p.children[1] == node)] else &self.root;
assert(link.* == node);
link.* = target;
}
};
}
// For iterating a slice in a random order
// https://lemire.me/blog/2017/09/18/visiting-all-values-in-an-array-exactly-once-in-random-order/
fn SliceIterRandomOrder(comptime T: type) type {
return struct {
rng: std.rand.Random,
slice: []T,
index: usize = undefined,
offset: usize = undefined,
co_prime: usize,
const Self = @This();
pub fn init(slice: []T, rng: std.rand.Random) Self {
return Self{
.rng = rng,
.slice = slice,
.co_prime = blk: {
if (slice.len == 0) break :blk 0;
var prime = slice.len / 2;
while (prime < slice.len) : (prime += 1) {
var gcd = [_]usize{ prime, slice.len };
while (gcd[1] != 0) {
const temp = gcd;
gcd = [_]usize{ temp[1], temp[0] % temp[1] };
}
if (gcd[0] == 1) break;
}
break :blk prime;
},
};
}
pub fn reset(self: *Self) void {
self.index = 0;
self.offset = self.rng.int(usize);
}
pub fn next(self: *Self) ?*T {
if (self.index >= self.slice.len) return null;
defer self.index += 1;
return &self.slice[((self.index *% self.co_prime) +% self.offset) % self.slice.len];
}
};
}
const TestTreap = Treap(u64, std.math.order);
const TestNode = TestTreap.Node;
test "std.Treap: insert, find, replace, remove" {
var treap = TestTreap{};
var nodes: [10]TestNode = undefined;
var prng = std.rand.DefaultPrng.init(0xdeadbeef);
var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());
// insert check
iter.reset();
while (iter.next()) |node| {
const key = prng.random().int(u64);
// make sure the current entry is empty.
var entry = treap.getEntryFor(key);
try testing.expectEqual(entry.key, key);
try testing.expectEqual(entry.node, null);
// insert the entry and make sure the fields are correct.
entry.set(node);
try testing.expectEqual(node.key, key);
try testing.expectEqual(entry.key, key);
try testing.expectEqual(entry.node, node);
}
// find check
iter.reset();
while (iter.next()) |node| {
const key = node.key;
// find the entry by-key and by-node after having been inserted.
var entry = treap.getEntryFor(node.key);
try testing.expectEqual(entry.key, key);
try testing.expectEqual(entry.node, node);
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
}
// replace check
iter.reset();
while (iter.next()) |node| {
const key = node.key;
// find the entry by node since we already know it exists
var entry = treap.getEntryForExisting(node);
try testing.expectEqual(entry.key, key);
try testing.expectEqual(entry.node, node);
var stub_node: TestNode = undefined;
// replace the node with a stub_node and ensure future finds point to the stub_node.
entry.set(&stub_node);
try testing.expectEqual(entry.node, &stub_node);
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
try testing.expectEqual(entry.node, treap.getEntryForExisting(&stub_node).node);
// replace the stub_node back to the node and ensure future finds point to the old node.
entry.set(node);
try testing.expectEqual(entry.node, node);
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
}
// remove check
iter.reset();
while (iter.next()) |node| {
const key = node.key;
// find the entry by node since we already know it exists
var entry = treap.getEntryForExisting(node);
try testing.expectEqual(entry.key, key);
try testing.expectEqual(entry.node, node);
// remove the node at the entry and ensure future finds point to it being removed.
entry.set(null);
try testing.expectEqual(entry.node, null);
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
// insert the node back and ensure future finds point to the inserted node
entry.set(node);
try testing.expectEqual(entry.node, node);
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
// remove the node again and make sure it was cleared after the insert
entry.set(null);
try testing.expectEqual(entry.node, null);
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
}
}
|