aboutsummaryrefslogtreecommitdiff
path: root/lib/std/rand.zig
blob: 72537e952f345fc36654cbf0867168fc9002fa55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//! The engines provided here should be initialized from an external source.
//! For a thread-local cryptographically secure pseudo random number generator,
//! use `std.crypto.random`.
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
//! be faster and use substantially less stack space.
//!
//! TODO(tiehuis): Benchmark these against other reference implementations.

const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;
const ziggurat = @import("rand/ziggurat.zig");
const maxInt = std.math.maxInt;

/// Fast unbiased random numbers.
pub const DefaultPrng = Xoshiro256;

/// Cryptographically secure random numbers.
pub const DefaultCsprng = Gimli;

pub const Isaac64 = @import("rand/Isaac64.zig");
pub const Gimli = @import("rand/Gimli.zig");
pub const Pcg = @import("rand/Pcg.zig");
pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");
pub const Xoshiro256 = @import("rand/Xoshiro256.zig");
pub const Sfc64 = @import("rand/Sfc64.zig");
pub const RomuTrio = @import("rand/RomuTrio.zig");

pub const Random = struct {
    ptr: *anyopaque,
    fillFn: if (builtin.zig_backend == .stage1)
        fn (ptr: *anyopaque, buf: []u8) void
    else
        *const fn (ptr: *anyopaque, buf: []u8) void,

    pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
        const Ptr = @TypeOf(pointer);
        assert(@typeInfo(Ptr) == .Pointer); // Must be a pointer
        assert(@typeInfo(Ptr).Pointer.size == .One); // Must be a single-item pointer
        assert(@typeInfo(@typeInfo(Ptr).Pointer.child) == .Struct); // Must point to a struct
        const gen = struct {
            fn fill(ptr: *anyopaque, buf: []u8) void {
                const alignment = @typeInfo(Ptr).Pointer.alignment;
                const self = @ptrCast(Ptr, @alignCast(alignment, ptr));
                fillFn(self, buf);
            }
        };

        return .{
            .ptr = pointer,
            .fillFn = gen.fill,
        };
    }

    /// Read random bytes into the specified buffer until full.
    pub fn bytes(r: Random, buf: []u8) void {
        r.fillFn(r.ptr, buf);
    }

    pub fn boolean(r: Random) bool {
        return r.int(u1) != 0;
    }

    /// Returns a random value from an enum, evenly distributed.
    pub fn enumValue(r: Random, comptime EnumType: type) EnumType {
        comptime assert(@typeInfo(EnumType) == .Enum);

        // We won't use int -> enum casting because enum elements can have
        //  arbitrary values.  Instead we'll randomly pick one of the type's values.
        const values = std.enums.values(EnumType);
        const index = r.uintLessThan(usize, values.len);
        return values[index];
    }

    /// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
    /// `i` is evenly distributed.
    pub fn int(r: Random, comptime T: type) T {
        const bits = @typeInfo(T).Int.bits;
        const UnsignedT = std.meta.Int(.unsigned, bits);
        const ByteAlignedT = std.meta.Int(.unsigned, @divTrunc(bits + 7, 8) * 8);

        var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
        r.bytes(rand_bytes[0..]);

        // use LE instead of native endian for better portability maybe?
        // TODO: endian portability is pointless if the underlying prng isn't endian portable.
        // TODO: document the endian portability of this library.
        const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
        const unsigned_result = @truncate(UnsignedT, byte_aligned_result);
        return @bitCast(T, unsigned_result);
    }

    /// Constant-time implementation off `uintLessThan`.
    /// The results of this function may be biased.
    pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        if (bits <= 32) {
            return @intCast(T, limitRangeBiased(u32, r.int(u32), less_than));
        } else {
            return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than));
        }
    }

    /// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
    /// This function assumes that the underlying `fillFn` produces evenly distributed values.
    /// Within this assumption, the runtime of this function is exponentially distributed.
    /// If `fillFn` were backed by a true random generator,
    /// the runtime of this function would technically be unbounded.
    /// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
    /// this function is guaranteed to return.
    /// If you need deterministic runtime bounds, use `uintLessThanBiased`.
    pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        // Small is typically u32
        const small_bits = @divTrunc(bits + 31, 32) * 32;
        const Small = std.meta.Int(.unsigned, small_bits);
        // Large is typically u64
        const Large = std.meta.Int(.unsigned, small_bits * 2);

        // adapted from:
        //   http://www.pcg-random.org/posts/bounded-rands.html
        //   "Lemire's (with an extra tweak from me)"
        var x: Small = r.int(Small);
        var m: Large = @as(Large, x) * @as(Large, less_than);
        var l: Small = @truncate(Small, m);
        if (l < less_than) {
            var t: Small = -%less_than;

            if (t >= less_than) {
                t -= less_than;
                if (t >= less_than) {
                    t %= less_than;
                }
            }
            while (l < t) {
                x = r.int(Small);
                m = @as(Large, x) * @as(Large, less_than);
                l = @truncate(Small, m);
            }
        }
        return @intCast(T, m >> small_bits);
    }

    /// Constant-time implementation off `uintAtMost`.
    /// The results of this function may be biased.
    pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThanBiased(T, at_most + 1);
    }

    /// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThan(T, at_most + 1);
    }

    /// Constant-time implementation off `intRangeLessThan`.
    /// The results of this function may be biased.
    pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, less_than);
            const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThanBiased(T, less_than - at_least);
        }
    }

    /// Returns an evenly distributed random integer `at_least <= i < less_than`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, less_than);
            const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThan(T, less_than - at_least);
        }
    }

    /// Constant-time implementation off `intRangeAtMostBiased`.
    /// The results of this function may be biased.
    pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, at_most);
            const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMostBiased(T, at_most - at_least);
        }
    }

    /// Returns an evenly distributed random integer `at_least <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, at_most);
            const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMost(T, at_most - at_least);
        }
    }

    /// Return a floating point value evenly distributed in the range [0, 1).
    pub fn float(r: Random, comptime T: type) T {
        // Generate a uniformly random value for the mantissa.
        // Then generate an exponentially biased random value for the exponent.
        // This covers every possible value in the range.
        switch (T) {
            f32 => {
                // Use 23 random bits for the mantissa, and the rest for the exponent.
                // If all 41 bits are zero, generate additional random bits, until a
                // set bit is found, or 126 bits have been generated.
                const rand = r.int(u64);
                var rand_lz = @clz(u64, rand);
                if (rand_lz >= 41) {
                    // TODO: when #5177 or #489 is implemented,
                    // tell the compiler it is unlikely (1/2^41) to reach this point.
                    // (Same for the if branch and the f64 calculations below.)
                    rand_lz = 41 + @clz(u64, r.int(u64));
                    if (rand_lz == 41 + 64) {
                        // It is astronomically unlikely to reach this point.
                        rand_lz += @clz(u32, r.int(u32) | 0x7FF);
                    }
                }
                const mantissa = @truncate(u23, rand);
                const exponent = @as(u32, 126 - rand_lz) << 23;
                return @bitCast(f32, exponent | mantissa);
            },
            f64 => {
                // Use 52 random bits for the mantissa, and the rest for the exponent.
                // If all 12 bits are zero, generate additional random bits, until a
                // set bit is found, or 1022 bits have been generated.
                const rand = r.int(u64);
                var rand_lz: u64 = @clz(u64, rand);
                if (rand_lz >= 12) {
                    rand_lz = 12;
                    while (true) {
                        // It is astronomically unlikely for this loop to execute more than once.
                        const addl_rand_lz = @clz(u64, r.int(u64));
                        rand_lz += addl_rand_lz;
                        if (addl_rand_lz != 64) {
                            break;
                        }
                        if (rand_lz >= 1022) {
                            rand_lz = 1022;
                            break;
                        }
                    }
                }
                const mantissa = rand & 0xFFFFFFFFFFFFF;
                const exponent = (1022 - rand_lz) << 52;
                return @bitCast(f64, exponent | mantissa);
            },
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return a floating point value normally distributed with mean = 0, stddev = 1.
    ///
    /// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
    pub fn floatNorm(r: Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.NormDist);
        switch (T) {
            f32 => return @floatCast(f32, value),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return an exponentially distributed float with a rate parameter of 1.
    ///
    /// To use a different rate parameter, use: floatExp(...) / desiredRate.
    pub fn floatExp(r: Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.ExpDist);
        switch (T) {
            f32 => return @floatCast(f32, value),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Shuffle a slice into a random order.
    pub fn shuffle(r: Random, comptime T: type, buf: []T) void {
        if (buf.len < 2) {
            return;
        }

        var i: usize = 0;
        while (i < buf.len - 1) : (i += 1) {
            const j = r.intRangeLessThan(usize, i, buf.len);
            mem.swap(T, &buf[i], &buf[j]);
        }
    }
};

/// Convert a random integer 0 <= random_int <= maxValue(T),
/// into an integer 0 <= result < less_than.
/// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
    comptime assert(@typeInfo(T).Int.signedness == .unsigned);
    const bits = @typeInfo(T).Int.bits;
    const T2 = std.meta.Int(.unsigned, bits * 2);

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Integer Multiplication (Biased)"
    var m: T2 = @as(T2, random_int) * @as(T2, less_than);
    return @intCast(T, m >> bits);
}

// Generator to extend 64-bit seed values into longer sequences.
//
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
// is still plenty for practical purposes.
pub const SplitMix64 = struct {
    s: u64,

    pub fn init(seed: u64) SplitMix64 {
        return SplitMix64{ .s = seed };
    }

    pub fn next(self: *SplitMix64) u64 {
        self.s +%= 0x9e3779b97f4a7c15;

        var z = self.s;
        z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
        z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
        return z ^ (z >> 31);
    }
};

test {
    std.testing.refAllDecls(@This());
    _ = @import("rand/test.zig");
}