aboutsummaryrefslogtreecommitdiff
path: root/lib/std/rand.zig
blob: 104be7f692e492636e7634c2cbee9007c7e38c25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
//! The engines provided here should be initialized from an external source.
//! For a thread-local cryptographically secure pseudo random number generator,
//! use `std.crypto.random`.
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
//! be faster and use substantially less stack space.
//!
//! TODO(tiehuis): Benchmark these against other reference implementations.

const std = @import("std.zig");
const builtin = std.builtin;
const assert = std.debug.assert;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
const mem = std.mem;
const math = std.math;
const ziggurat = @import("rand/ziggurat.zig");
const maxInt = std.math.maxInt;

/// Fast unbiased random numbers.
pub const DefaultPrng = Xoshiro256;

/// Cryptographically secure random numbers.
pub const DefaultCsprng = Gimli;

pub const Isaac64 = @import("rand/Isaac64.zig");
pub const Gimli = @import("rand/Gimli.zig");
pub const Pcg = @import("rand/Pcg.zig");
pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");
pub const Xoshiro256 = @import("rand/Xoshiro256.zig");
pub const Sfc64 = @import("rand/Sfc64.zig");

pub const Random = struct {
    fillFn: fn (r: *Random, buf: []u8) void,

    /// Read random bytes into the specified buffer until full.
    pub fn bytes(r: *Random, buf: []u8) void {
        r.fillFn(r, buf);
    }

    pub fn boolean(r: *Random) bool {
        return r.int(u1) != 0;
    }

    /// Returns a random value from an enum, evenly distributed.
    pub fn enumValue(r: *Random, comptime EnumType: type) EnumType {
        if (comptime !std.meta.trait.is(.Enum)(EnumType)) {
            @compileError("Random.enumValue requires an enum type, not a " ++ @typeName(EnumType));
        }

        // We won't use int -> enum casting because enum elements can have
        //  arbitrary values.  Instead we'll randomly pick one of the type's values.
        const values = std.enums.values(EnumType);
        const index = r.uintLessThan(usize, values.len);
        return values[index];
    }

    /// Returns a random int `i` such that `0 <= i <= maxInt(T)`.
    /// `i` is evenly distributed.
    pub fn int(r: *Random, comptime T: type) T {
        const bits = @typeInfo(T).Int.bits;
        const UnsignedT = std.meta.Int(.unsigned, bits);
        const ByteAlignedT = std.meta.Int(.unsigned, @divTrunc(bits + 7, 8) * 8);

        var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
        r.bytes(rand_bytes[0..]);

        // use LE instead of native endian for better portability maybe?
        // TODO: endian portability is pointless if the underlying prng isn't endian portable.
        // TODO: document the endian portability of this library.
        const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
        const unsigned_result = @truncate(UnsignedT, byte_aligned_result);
        return @bitCast(T, unsigned_result);
    }

    /// Constant-time implementation off `uintLessThan`.
    /// The results of this function may be biased.
    pub fn uintLessThanBiased(r: *Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        if (bits <= 32) {
            return @intCast(T, limitRangeBiased(u32, r.int(u32), less_than));
        } else {
            return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than));
        }
    }

    /// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
    /// This function assumes that the underlying `fillFn` produces evenly distributed values.
    /// Within this assumption, the runtime of this function is exponentially distributed.
    /// If `fillFn` were backed by a true random generator,
    /// the runtime of this function would technically be unbounded.
    /// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
    /// this function is guaranteed to return.
    /// If you need deterministic runtime bounds, use `uintLessThanBiased`.
    pub fn uintLessThan(r: *Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        // Small is typically u32
        const small_bits = @divTrunc(bits + 31, 32) * 32;
        const Small = std.meta.Int(.unsigned, small_bits);
        // Large is typically u64
        const Large = std.meta.Int(.unsigned, small_bits * 2);

        // adapted from:
        //   http://www.pcg-random.org/posts/bounded-rands.html
        //   "Lemire's (with an extra tweak from me)"
        var x: Small = r.int(Small);
        var m: Large = @as(Large, x) * @as(Large, less_than);
        var l: Small = @truncate(Small, m);
        if (l < less_than) {
            // TODO: workaround for https://github.com/ziglang/zig/issues/1770
            // should be:
            //   var t: Small = -%less_than;
            var t: Small = @bitCast(Small, -%@bitCast(std.meta.Int(.signed, small_bits), @as(Small, less_than)));

            if (t >= less_than) {
                t -= less_than;
                if (t >= less_than) {
                    t %= less_than;
                }
            }
            while (l < t) {
                x = r.int(Small);
                m = @as(Large, x) * @as(Large, less_than);
                l = @truncate(Small, m);
            }
        }
        return @intCast(T, m >> small_bits);
    }

    /// Constant-time implementation off `uintAtMost`.
    /// The results of this function may be biased.
    pub fn uintAtMostBiased(r: *Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThanBiased(T, at_most + 1);
    }

    /// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn uintAtMost(r: *Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThan(T, at_most + 1);
    }

    /// Constant-time implementation off `intRangeLessThan`.
    /// The results of this function may be biased.
    pub fn intRangeLessThanBiased(r: *Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, less_than);
            const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThanBiased(T, less_than - at_least);
        }
    }

    /// Returns an evenly distributed random integer `at_least <= i < less_than`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeLessThan(r: *Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, less_than);
            const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThan(T, less_than - at_least);
        }
    }

    /// Constant-time implementation off `intRangeAtMostBiased`.
    /// The results of this function may be biased.
    pub fn intRangeAtMostBiased(r: *Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, at_most);
            const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMostBiased(T, at_most - at_least);
        }
    }

    /// Returns an evenly distributed random integer `at_least <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeAtMost(r: *Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @bitCast(UnsignedT, at_least);
            const hi = @bitCast(UnsignedT, at_most);
            const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
            return @bitCast(T, result);
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMost(T, at_most - at_least);
        }
    }

    pub const scalar = @compileError("deprecated; use boolean() or int() instead");

    pub const range = @compileError("deprecated; use intRangeLessThan()");

    /// Return a floating point value evenly distributed in the range [0, 1).
    pub fn float(r: *Random, comptime T: type) T {
        // Generate a uniform value between [1, 2) and scale down to [0, 1).
        // Note: The lowest mantissa bit is always set to 0 so we only use half the available range.
        switch (T) {
            f32 => {
                const s = r.int(u32);
                const repr = (0x7f << 23) | (s >> 9);
                return @bitCast(f32, repr) - 1.0;
            },
            f64 => {
                const s = r.int(u64);
                const repr = (0x3ff << 52) | (s >> 12);
                return @bitCast(f64, repr) - 1.0;
            },
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return a floating point value normally distributed with mean = 0, stddev = 1.
    ///
    /// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
    pub fn floatNorm(r: *Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.NormDist);
        switch (T) {
            f32 => return @floatCast(f32, value),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return an exponentially distributed float with a rate parameter of 1.
    ///
    /// To use a different rate parameter, use: floatExp(...) / desiredRate.
    pub fn floatExp(r: *Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.ExpDist);
        switch (T) {
            f32 => return @floatCast(f32, value),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Shuffle a slice into a random order.
    pub fn shuffle(r: *Random, comptime T: type, buf: []T) void {
        if (buf.len < 2) {
            return;
        }

        var i: usize = 0;
        while (i < buf.len - 1) : (i += 1) {
            const j = r.intRangeLessThan(usize, i, buf.len);
            mem.swap(T, &buf[i], &buf[j]);
        }
    }
};

/// Convert a random integer 0 <= random_int <= maxValue(T),
/// into an integer 0 <= result < less_than.
/// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
    comptime assert(@typeInfo(T).Int.signedness == .unsigned);
    const bits = @typeInfo(T).Int.bits;
    const T2 = std.meta.Int(.unsigned, bits * 2);

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Integer Multiplication (Biased)"
    var m: T2 = @as(T2, random_int) * @as(T2, less_than);
    return @intCast(T, m >> bits);
}

const SequentialPrng = struct {
    const Self = @This();
    random: Random,
    next_value: u8,

    pub fn init() Self {
        return Self{
            .random = Random{ .fillFn = fill },
            .next_value = 0,
        };
    }

    fn fill(r: *Random, buf: []u8) void {
        const self = @fieldParentPtr(Self, "random", r);
        for (buf) |*b| {
            b.* = self.next_value;
        }
        self.next_value +%= 1;
    }
};

test "Random int" {
    try testRandomInt();
    comptime try testRandomInt();
}
fn testRandomInt() !void {
    var r = SequentialPrng.init();

    try expect(r.random.int(u0) == 0);

    r.next_value = 0;
    try expect(r.random.int(u1) == 0);
    try expect(r.random.int(u1) == 1);
    try expect(r.random.int(u2) == 2);
    try expect(r.random.int(u2) == 3);
    try expect(r.random.int(u2) == 0);

    r.next_value = 0xff;
    try expect(r.random.int(u8) == 0xff);
    r.next_value = 0x11;
    try expect(r.random.int(u8) == 0x11);

    r.next_value = 0xff;
    try expect(r.random.int(u32) == 0xffffffff);
    r.next_value = 0x11;
    try expect(r.random.int(u32) == 0x11111111);

    r.next_value = 0xff;
    try expect(r.random.int(i32) == -1);
    r.next_value = 0x11;
    try expect(r.random.int(i32) == 0x11111111);

    r.next_value = 0xff;
    try expect(r.random.int(i8) == -1);
    r.next_value = 0x11;
    try expect(r.random.int(i8) == 0x11);

    r.next_value = 0xff;
    try expect(r.random.int(u33) == 0x1ffffffff);
    r.next_value = 0xff;
    try expect(r.random.int(i1) == -1);
    r.next_value = 0xff;
    try expect(r.random.int(i2) == -1);
    r.next_value = 0xff;
    try expect(r.random.int(i33) == -1);
}

test "Random boolean" {
    try testRandomBoolean();
    comptime try testRandomBoolean();
}
fn testRandomBoolean() !void {
    var r = SequentialPrng.init();
    try expect(r.random.boolean() == false);
    try expect(r.random.boolean() == true);
    try expect(r.random.boolean() == false);
    try expect(r.random.boolean() == true);
}

test "Random enum" {
    try testRandomEnumValue();
    comptime try testRandomEnumValue();
}
fn testRandomEnumValue() !void {
    const TestEnum = enum {
        First,
        Second,
        Third,
    };
    var r = SequentialPrng.init();
    r.next_value = 0;
    try expect(r.random.enumValue(TestEnum) == TestEnum.First);
    try expect(r.random.enumValue(TestEnum) == TestEnum.First);
    try expect(r.random.enumValue(TestEnum) == TestEnum.First);
}

test "Random intLessThan" {
    @setEvalBranchQuota(10000);
    try testRandomIntLessThan();
    comptime try testRandomIntLessThan();
}
fn testRandomIntLessThan() !void {
    var r = SequentialPrng.init();
    r.next_value = 0xff;
    try expect(r.random.uintLessThan(u8, 4) == 3);
    try expect(r.next_value == 0);
    try expect(r.random.uintLessThan(u8, 4) == 0);
    try expect(r.next_value == 1);

    r.next_value = 0;
    try expect(r.random.uintLessThan(u64, 32) == 0);

    // trigger the bias rejection code path
    r.next_value = 0;
    try expect(r.random.uintLessThan(u8, 3) == 0);
    // verify we incremented twice
    try expect(r.next_value == 2);

    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(u8, 0, 0x80) == 0x7f);
    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(u8, 0x7f, 0xff) == 0xfe);

    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(i8, 0, 0x40) == 0x3f);
    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(i8, -0x40, 0x40) == 0x3f);
    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(i8, -0x80, 0) == -1);

    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(i3, -4, 0) == -1);
    r.next_value = 0xff;
    try expect(r.random.intRangeLessThan(i3, -2, 2) == 1);
}

test "Random intAtMost" {
    @setEvalBranchQuota(10000);
    try testRandomIntAtMost();
    comptime try testRandomIntAtMost();
}
fn testRandomIntAtMost() !void {
    var r = SequentialPrng.init();
    r.next_value = 0xff;
    try expect(r.random.uintAtMost(u8, 3) == 3);
    try expect(r.next_value == 0);
    try expect(r.random.uintAtMost(u8, 3) == 0);

    // trigger the bias rejection code path
    r.next_value = 0;
    try expect(r.random.uintAtMost(u8, 2) == 0);
    // verify we incremented twice
    try expect(r.next_value == 2);

    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(u8, 0, 0x7f) == 0x7f);
    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(u8, 0x7f, 0xfe) == 0xfe);

    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(i8, 0, 0x3f) == 0x3f);
    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(i8, -0x40, 0x3f) == 0x3f);
    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(i8, -0x80, -1) == -1);

    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(i3, -4, -1) == -1);
    r.next_value = 0xff;
    try expect(r.random.intRangeAtMost(i3, -2, 1) == 1);

    try expect(r.random.uintAtMost(u0, 0) == 0);
}

test "Random Biased" {
    var r = DefaultPrng.init(0);
    // Not thoroughly checking the logic here.
    // Just want to execute all the paths with different types.

    try expect(r.random.uintLessThanBiased(u1, 1) == 0);
    try expect(r.random.uintLessThanBiased(u32, 10) < 10);
    try expect(r.random.uintLessThanBiased(u64, 20) < 20);

    try expect(r.random.uintAtMostBiased(u0, 0) == 0);
    try expect(r.random.uintAtMostBiased(u1, 0) <= 0);
    try expect(r.random.uintAtMostBiased(u32, 10) <= 10);
    try expect(r.random.uintAtMostBiased(u64, 20) <= 20);

    try expect(r.random.intRangeLessThanBiased(u1, 0, 1) == 0);
    try expect(r.random.intRangeLessThanBiased(i1, -1, 0) == -1);
    try expect(r.random.intRangeLessThanBiased(u32, 10, 20) >= 10);
    try expect(r.random.intRangeLessThanBiased(i32, 10, 20) >= 10);
    try expect(r.random.intRangeLessThanBiased(u64, 20, 40) >= 20);
    try expect(r.random.intRangeLessThanBiased(i64, 20, 40) >= 20);

    // uncomment for broken module error:
    //expect(r.random.intRangeAtMostBiased(u0, 0, 0) == 0);
    try expect(r.random.intRangeAtMostBiased(u1, 0, 1) >= 0);
    try expect(r.random.intRangeAtMostBiased(i1, -1, 0) >= -1);
    try expect(r.random.intRangeAtMostBiased(u32, 10, 20) >= 10);
    try expect(r.random.intRangeAtMostBiased(i32, 10, 20) >= 10);
    try expect(r.random.intRangeAtMostBiased(u64, 20, 40) >= 20);
    try expect(r.random.intRangeAtMostBiased(i64, 20, 40) >= 20);
}

// Generator to extend 64-bit seed values into longer sequences.
//
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
// is still plenty for practical purposes.
pub const SplitMix64 = struct {
    s: u64,

    pub fn init(seed: u64) SplitMix64 {
        return SplitMix64{ .s = seed };
    }

    pub fn next(self: *SplitMix64) u64 {
        self.s +%= 0x9e3779b97f4a7c15;

        var z = self.s;
        z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
        z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
        return z ^ (z >> 31);
    }
};

test "splitmix64 sequence" {
    var r = SplitMix64.init(0xaeecf86f7878dd75);

    const seq = [_]u64{
        0x5dbd39db0178eb44,
        0xa9900fb66b397da3,
        0x5c1a28b1aeebcf5c,
        0x64a963238f776912,
        0xc6d4177b21d1c0ab,
        0xb2cbdbdb5ea35394,
    };

    for (seq) |s| {
        try expect(s == r.next());
    }
}

// Actual Random helper function tests, pcg engine is assumed correct.
test "Random float" {
    var prng = DefaultPrng.init(0);

    var i: usize = 0;
    while (i < 1000) : (i += 1) {
        const val1 = prng.random.float(f32);
        try expect(val1 >= 0.0);
        try expect(val1 < 1.0);

        const val2 = prng.random.float(f64);
        try expect(val2 >= 0.0);
        try expect(val2 < 1.0);
    }
}

test "Random shuffle" {
    var prng = DefaultPrng.init(0);

    var seq = [_]u8{ 0, 1, 2, 3, 4 };
    var seen = [_]bool{false} ** 5;

    var i: usize = 0;
    while (i < 1000) : (i += 1) {
        prng.random.shuffle(u8, seq[0..]);
        seen[seq[0]] = true;
        try expect(sumArray(seq[0..]) == 10);
    }

    // we should see every entry at the head at least once
    for (seen) |e| {
        try expect(e == true);
    }
}

fn sumArray(s: []const u8) u32 {
    var r: u32 = 0;
    for (s) |e|
        r += e;
    return r;
}

test "Random range" {
    var prng = DefaultPrng.init(0);
    try testRange(&prng.random, -4, 3);
    try testRange(&prng.random, -4, -1);
    try testRange(&prng.random, 10, 14);
    try testRange(&prng.random, -0x80, 0x7f);
}

fn testRange(r: *Random, start: i8, end: i8) !void {
    try testRangeBias(r, start, end, true);
    try testRangeBias(r, start, end, false);
}
fn testRangeBias(r: *Random, start: i8, end: i8, biased: bool) !void {
    const count = @intCast(usize, @as(i32, end) - @as(i32, start));
    var values_buffer = [_]bool{false} ** 0x100;
    const values = values_buffer[0..count];
    var i: usize = 0;
    while (i < count) {
        const value: i32 = if (biased) r.intRangeLessThanBiased(i8, start, end) else r.intRangeLessThan(i8, start, end);
        const index = @intCast(usize, value - start);
        if (!values[index]) {
            i += 1;
            values[index] = true;
        }
    }
}

test "CSPRNG" {
    var secret_seed: [DefaultCsprng.secret_seed_length]u8 = undefined;
    std.crypto.random.bytes(&secret_seed);
    var csprng = DefaultCsprng.init(secret_seed);
    const a = csprng.random.int(u64);
    const b = csprng.random.int(u64);
    const c = csprng.random.int(u64);
    try expect(a ^ b ^ c != 0);
}

test {
    std.testing.refAllDecls(@This());
}