aboutsummaryrefslogtreecommitdiff
path: root/lib/std/priority_dequeue.zig
blob: 31ae965286c7687b38b66341bc76d478c8b65cad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
const std = @import("std.zig");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const Order = std.math.Order;
const testing = std.testing;
const expect = testing.expect;
const expectEqual = testing.expectEqual;
const expectError = testing.expectError;

/// Priority Dequeue for storing generic data. Initialize with `init`.
/// Provide `compareFn` that returns `Order.lt` when its second
/// argument should get min-popped before its third argument,
/// `Order.eq` if the arguments are of equal priority, or `Order.gt`
/// if the third argument should be min-popped second.
/// Popping the max element works in reverse. For example,
/// to make `popMin` return the smallest number, provide
/// `fn lessThan(context: void, a: T, b: T) Order { _ = context; return std.math.order(a, b); }`
pub fn PriorityDequeue(comptime T: type, comptime Context: type, comptime compareFn: fn (context: Context, a: T, b: T) Order) type {
    return struct {
        const Self = @This();

        items: []T,
        len: usize,
        allocator: Allocator,
        context: Context,

        /// Initialize and return a new priority dequeue.
        pub fn init(allocator: Allocator, context: Context) Self {
            return Self{
                .items = &[_]T{},
                .len = 0,
                .allocator = allocator,
                .context = context,
            };
        }

        /// Free memory used by the dequeue.
        pub fn deinit(self: Self) void {
            self.allocator.free(self.items);
        }

        /// Insert a new element, maintaining priority.
        pub fn add(self: *Self, elem: T) !void {
            try self.ensureUnusedCapacity(1);
            addUnchecked(self, elem);
        }

        /// Add each element in `items` to the dequeue.
        pub fn addSlice(self: *Self, items: []const T) !void {
            try self.ensureUnusedCapacity(items.len);
            for (items) |e| {
                self.addUnchecked(e);
            }
        }

        fn addUnchecked(self: *Self, elem: T) void {
            self.items[self.len] = elem;

            if (self.len > 0) {
                const start = self.getStartForSiftUp(elem, self.len);
                self.siftUp(start);
            }

            self.len += 1;
        }

        fn isMinLayer(index: usize) bool {
            // In the min-max heap structure:
            // The first element is on a min layer;
            // next two are on a max layer;
            // next four are on a min layer, and so on.
            return 1 == @clz(index +% 1) & 1;
        }

        fn nextIsMinLayer(self: Self) bool {
            return isMinLayer(self.len);
        }

        const StartIndexAndLayer = struct {
            index: usize,
            min_layer: bool,
        };

        fn getStartForSiftUp(self: Self, child: T, index: usize) StartIndexAndLayer {
            var child_index = index;
            var parent_index = parentIndex(child_index);
            const parent = self.items[parent_index];

            const min_layer = self.nextIsMinLayer();
            const order = compareFn(self.context, child, parent);
            if ((min_layer and order == .gt) or (!min_layer and order == .lt)) {
                // We must swap the item with it's parent if it is on the "wrong" layer
                self.items[parent_index] = child;
                self.items[child_index] = parent;
                return .{
                    .index = parent_index,
                    .min_layer = !min_layer,
                };
            } else {
                return .{
                    .index = child_index,
                    .min_layer = min_layer,
                };
            }
        }

        fn siftUp(self: *Self, start: StartIndexAndLayer) void {
            if (start.min_layer) {
                doSiftUp(self, start.index, .lt);
            } else {
                doSiftUp(self, start.index, .gt);
            }
        }

        fn doSiftUp(self: *Self, start_index: usize, target_order: Order) void {
            var child_index = start_index;
            while (child_index > 2) {
                var grandparent_index = grandparentIndex(child_index);
                const child = self.items[child_index];
                const grandparent = self.items[grandparent_index];

                // If the grandparent is already better or equal, we have gone as far as we need to
                if (compareFn(self.context, child, grandparent) != target_order) break;

                // Otherwise swap the item with it's grandparent
                self.items[grandparent_index] = child;
                self.items[child_index] = grandparent;
                child_index = grandparent_index;
            }
        }

        /// Look at the smallest element in the dequeue. Returns
        /// `null` if empty.
        pub fn peekMin(self: *Self) ?T {
            return if (self.len > 0) self.items[0] else null;
        }

        /// Look at the largest element in the dequeue. Returns
        /// `null` if empty.
        pub fn peekMax(self: *Self) ?T {
            if (self.len == 0) return null;
            if (self.len == 1) return self.items[0];
            if (self.len == 2) return self.items[1];
            return self.bestItemAtIndices(1, 2, .gt).item;
        }

        fn maxIndex(self: Self) ?usize {
            if (self.len == 0) return null;
            if (self.len == 1) return 0;
            if (self.len == 2) return 1;
            return self.bestItemAtIndices(1, 2, .gt).index;
        }

        /// Pop the smallest element from the dequeue. Returns
        /// `null` if empty.
        pub fn removeMinOrNull(self: *Self) ?T {
            return if (self.len > 0) self.removeMin() else null;
        }

        /// Remove and return the smallest element from the
        /// dequeue.
        pub fn removeMin(self: *Self) T {
            return self.removeIndex(0);
        }

        /// Pop the largest element from the dequeue. Returns
        /// `null` if empty.
        pub fn removeMaxOrNull(self: *Self) ?T {
            return if (self.len > 0) self.removeMax() else null;
        }

        /// Remove and return the largest element from the
        /// dequeue.
        pub fn removeMax(self: *Self) T {
            return self.removeIndex(self.maxIndex().?);
        }

        /// Remove and return element at index. Indices are in the
        /// same order as iterator, which is not necessarily priority
        /// order.
        pub fn removeIndex(self: *Self, index: usize) T {
            assert(self.len > index);
            const item = self.items[index];
            const last = self.items[self.len - 1];

            self.items[index] = last;
            self.len -= 1;
            siftDown(self, index);

            return item;
        }

        fn siftDown(self: *Self, index: usize) void {
            if (isMinLayer(index)) {
                self.doSiftDown(index, .lt);
            } else {
                self.doSiftDown(index, .gt);
            }
        }

        fn doSiftDown(self: *Self, start_index: usize, target_order: Order) void {
            var index = start_index;
            const half = self.len >> 1;
            while (true) {
                const first_grandchild_index = firstGrandchildIndex(index);
                const last_grandchild_index = first_grandchild_index + 3;

                const elem = self.items[index];

                if (last_grandchild_index < self.len) {
                    // All four grandchildren exist
                    const index2 = first_grandchild_index + 1;
                    const index3 = index2 + 1;

                    // Find the best grandchild
                    const best_left = self.bestItemAtIndices(first_grandchild_index, index2, target_order);
                    const best_right = self.bestItemAtIndices(index3, last_grandchild_index, target_order);
                    const best_grandchild = self.bestItem(best_left, best_right, target_order);

                    // If the item is better than or equal to its best grandchild, we are done
                    if (compareFn(self.context, best_grandchild.item, elem) != target_order) return;

                    // Otherwise, swap them
                    self.items[best_grandchild.index] = elem;
                    self.items[index] = best_grandchild.item;
                    index = best_grandchild.index;

                    // We might need to swap the element with it's parent
                    self.swapIfParentIsBetter(elem, index, target_order);
                } else {
                    // The children or grandchildren are the last layer
                    const first_child_index = firstChildIndex(index);
                    if (first_child_index >= self.len) return;

                    const best_descendent = self.bestDescendent(first_child_index, first_grandchild_index, target_order);

                    // If the item is better than or equal to its best descendant, we are done
                    if (compareFn(self.context, best_descendent.item, elem) != target_order) return;

                    // Otherwise swap them
                    self.items[best_descendent.index] = elem;
                    self.items[index] = best_descendent.item;
                    index = best_descendent.index;

                    // If we didn't swap a grandchild, we are done
                    if (index < first_grandchild_index) return;

                    // We might need to swap the element with it's parent
                    self.swapIfParentIsBetter(elem, index, target_order);
                    return;
                }

                // If we are now in the last layer, we are done
                if (index >= half) return;
            }
        }

        fn swapIfParentIsBetter(self: *Self, child: T, child_index: usize, target_order: Order) void {
            const parent_index = parentIndex(child_index);
            const parent = self.items[parent_index];

            if (compareFn(self.context, parent, child) == target_order) {
                self.items[parent_index] = child;
                self.items[child_index] = parent;
            }
        }

        const ItemAndIndex = struct {
            item: T,
            index: usize,
        };

        fn getItem(self: Self, index: usize) ItemAndIndex {
            return .{
                .item = self.items[index],
                .index = index,
            };
        }

        fn bestItem(self: Self, item1: ItemAndIndex, item2: ItemAndIndex, target_order: Order) ItemAndIndex {
            if (compareFn(self.context, item1.item, item2.item) == target_order) {
                return item1;
            } else {
                return item2;
            }
        }

        fn bestItemAtIndices(self: Self, index1: usize, index2: usize, target_order: Order) ItemAndIndex {
            var item1 = self.getItem(index1);
            var item2 = self.getItem(index2);
            return self.bestItem(item1, item2, target_order);
        }

        fn bestDescendent(self: Self, first_child_index: usize, first_grandchild_index: usize, target_order: Order) ItemAndIndex {
            const second_child_index = first_child_index + 1;
            if (first_grandchild_index >= self.len) {
                // No grandchildren, find the best child (second may not exist)
                if (second_child_index >= self.len) {
                    return .{
                        .item = self.items[first_child_index],
                        .index = first_child_index,
                    };
                } else {
                    return self.bestItemAtIndices(first_child_index, second_child_index, target_order);
                }
            }

            const second_grandchild_index = first_grandchild_index + 1;
            if (second_grandchild_index >= self.len) {
                // One grandchild, so we know there is a second child. Compare first grandchild and second child
                return self.bestItemAtIndices(first_grandchild_index, second_child_index, target_order);
            }

            const best_left_grandchild_index = self.bestItemAtIndices(first_grandchild_index, second_grandchild_index, target_order).index;
            const third_grandchild_index = second_grandchild_index + 1;
            if (third_grandchild_index >= self.len) {
                // Two grandchildren, and we know the best. Compare this to second child.
                return self.bestItemAtIndices(best_left_grandchild_index, second_child_index, target_order);
            } else {
                // Three grandchildren, compare the min of the first two with the third
                return self.bestItemAtIndices(best_left_grandchild_index, third_grandchild_index, target_order);
            }
        }

        /// Return the number of elements remaining in the dequeue
        pub fn count(self: Self) usize {
            return self.len;
        }

        /// Return the number of elements that can be added to the
        /// dequeue before more memory is allocated.
        pub fn capacity(self: Self) usize {
            return self.items.len;
        }

        /// Dequeue takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// De-initialize with `deinit`.
        pub fn fromOwnedSlice(allocator: Allocator, items: []T, context: Context) Self {
            var queue = Self{
                .items = items,
                .len = items.len,
                .allocator = allocator,
                .context = context,
            };

            if (queue.len <= 1) return queue;

            const half = (queue.len >> 1) - 1;
            var i: usize = 0;
            while (i <= half) : (i += 1) {
                const index = half - i;
                queue.siftDown(index);
            }
            return queue;
        }

        /// Ensure that the dequeue can fit at least `new_capacity` items.
        pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) !void {
            var better_capacity = self.capacity();
            if (better_capacity >= new_capacity) return;
            while (true) {
                better_capacity += better_capacity / 2 + 8;
                if (better_capacity >= new_capacity) break;
            }
            self.items = try self.allocator.realloc(self.items, better_capacity);
        }

        /// Ensure that the dequeue can fit at least `additional_count` **more** items.
        pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) !void {
            return self.ensureTotalCapacity(self.len + additional_count);
        }

        /// Reduce allocated capacity to `new_len`.
        pub fn shrinkAndFree(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);

            // Cannot shrink to smaller than the current queue size without invalidating the heap property
            assert(new_len >= self.len);

            self.items = self.allocator.realloc(self.items[0..], new_len) catch |e| switch (e) {
                error.OutOfMemory => { // no problem, capacity is still correct then.
                    self.items.len = new_len;
                    return;
                },
            };
        }

        pub fn update(self: *Self, elem: T, new_elem: T) !void {
            const old_index = blk: {
                var idx: usize = 0;
                while (idx < self.len) : (idx += 1) {
                    const item = self.items[idx];
                    if (compareFn(self.context, item, elem) == .eq) break :blk idx;
                }
                return error.ElementNotFound;
            };
            _ = self.removeIndex(old_index);
            self.addUnchecked(new_elem);
        }

        pub const Iterator = struct {
            queue: *PriorityDequeue(T, Context, compareFn),
            count: usize,

            pub fn next(it: *Iterator) ?T {
                if (it.count >= it.queue.len) return null;
                const out = it.count;
                it.count += 1;
                return it.queue.items[out];
            }

            pub fn reset(it: *Iterator) void {
                it.count = 0;
            }
        };

        /// Return an iterator that walks the queue without consuming
        /// it. The iteration order may differ from the priority order.
        /// Invalidated if the queue is modified.
        pub fn iterator(self: *Self) Iterator {
            return Iterator{
                .queue = self,
                .count = 0,
            };
        }

        fn dump(self: *Self) void {
            const print = std.debug.print;
            print("{{ ", .{});
            print("items: ", .{});
            for (self.items, 0..) |e, i| {
                if (i >= self.len) break;
                print("{}, ", .{e});
            }
            print("array: ", .{});
            for (self.items) |e| {
                print("{}, ", .{e});
            }
            print("len: {} ", .{self.len});
            print("capacity: {}", .{self.capacity()});
            print(" }}\n", .{});
        }

        fn parentIndex(index: usize) usize {
            return (index - 1) >> 1;
        }

        fn grandparentIndex(index: usize) usize {
            return parentIndex(parentIndex(index));
        }

        fn firstChildIndex(index: usize) usize {
            return (index << 1) + 1;
        }

        fn firstGrandchildIndex(index: usize) usize {
            return firstChildIndex(firstChildIndex(index));
        }
    };
}

fn lessThanComparison(context: void, a: u32, b: u32) Order {
    _ = context;
    return std.math.order(a, b);
}

const PDQ = PriorityDequeue(u32, void, lessThanComparison);

test "std.PriorityDequeue: add and remove min" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(54);
    try queue.add(12);
    try queue.add(7);
    try queue.add(23);
    try queue.add(25);
    try queue.add(13);

    try expectEqual(@as(u32, 7), queue.removeMin());
    try expectEqual(@as(u32, 12), queue.removeMin());
    try expectEqual(@as(u32, 13), queue.removeMin());
    try expectEqual(@as(u32, 23), queue.removeMin());
    try expectEqual(@as(u32, 25), queue.removeMin());
    try expectEqual(@as(u32, 54), queue.removeMin());
}

test "std.PriorityDequeue: add and remove min structs" {
    const S = struct {
        size: u32,
    };
    var queue = PriorityDequeue(S, void, struct {
        fn order(context: void, a: S, b: S) Order {
            _ = context;
            return std.math.order(a.size, b.size);
        }
    }.order).init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(.{ .size = 54 });
    try queue.add(.{ .size = 12 });
    try queue.add(.{ .size = 7 });
    try queue.add(.{ .size = 23 });
    try queue.add(.{ .size = 25 });
    try queue.add(.{ .size = 13 });

    try expectEqual(@as(u32, 7), queue.removeMin().size);
    try expectEqual(@as(u32, 12), queue.removeMin().size);
    try expectEqual(@as(u32, 13), queue.removeMin().size);
    try expectEqual(@as(u32, 23), queue.removeMin().size);
    try expectEqual(@as(u32, 25), queue.removeMin().size);
    try expectEqual(@as(u32, 54), queue.removeMin().size);
}

test "std.PriorityDequeue: add and remove max" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(54);
    try queue.add(12);
    try queue.add(7);
    try queue.add(23);
    try queue.add(25);
    try queue.add(13);

    try expectEqual(@as(u32, 54), queue.removeMax());
    try expectEqual(@as(u32, 25), queue.removeMax());
    try expectEqual(@as(u32, 23), queue.removeMax());
    try expectEqual(@as(u32, 13), queue.removeMax());
    try expectEqual(@as(u32, 12), queue.removeMax());
    try expectEqual(@as(u32, 7), queue.removeMax());
}

test "std.PriorityDequeue: add and remove same min" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(1);
    try queue.add(1);
    try queue.add(2);
    try queue.add(2);
    try queue.add(1);
    try queue.add(1);

    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 2), queue.removeMin());
    try expectEqual(@as(u32, 2), queue.removeMin());
}

test "std.PriorityDequeue: add and remove same max" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(1);
    try queue.add(1);
    try queue.add(2);
    try queue.add(2);
    try queue.add(1);
    try queue.add(1);

    try expectEqual(@as(u32, 2), queue.removeMax());
    try expectEqual(@as(u32, 2), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
}

test "std.PriorityDequeue: removeOrNull empty" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try expect(queue.removeMinOrNull() == null);
    try expect(queue.removeMaxOrNull() == null);
}

test "std.PriorityDequeue: edge case 3 elements" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(9);
    try queue.add(3);
    try queue.add(2);

    try expectEqual(@as(u32, 2), queue.removeMin());
    try expectEqual(@as(u32, 3), queue.removeMin());
    try expectEqual(@as(u32, 9), queue.removeMin());
}

test "std.PriorityDequeue: edge case 3 elements max" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(9);
    try queue.add(3);
    try queue.add(2);

    try expectEqual(@as(u32, 9), queue.removeMax());
    try expectEqual(@as(u32, 3), queue.removeMax());
    try expectEqual(@as(u32, 2), queue.removeMax());
}

test "std.PriorityDequeue: peekMin" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try expect(queue.peekMin() == null);

    try queue.add(9);
    try queue.add(3);
    try queue.add(2);

    try expect(queue.peekMin().? == 2);
    try expect(queue.peekMin().? == 2);
}

test "std.PriorityDequeue: peekMax" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try expect(queue.peekMin() == null);

    try queue.add(9);
    try queue.add(3);
    try queue.add(2);

    try expect(queue.peekMax().? == 9);
    try expect(queue.peekMax().? == 9);
}

test "std.PriorityDequeue: sift up with odd indices, removeMin" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();
    const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
    for (items) |e| {
        try queue.add(e);
    }

    const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
    for (sorted_items) |e| {
        try expectEqual(e, queue.removeMin());
    }
}

test "std.PriorityDequeue: sift up with odd indices, removeMax" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();
    const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
    for (items) |e| {
        try queue.add(e);
    }

    const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
    for (sorted_items) |e| {
        try expectEqual(e, queue.removeMax());
    }
}

test "std.PriorityDequeue: addSlice min" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();
    const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
    try queue.addSlice(items[0..]);

    const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
    for (sorted_items) |e| {
        try expectEqual(e, queue.removeMin());
    }
}

test "std.PriorityDequeue: addSlice max" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();
    const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
    try queue.addSlice(items[0..]);

    const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
    for (sorted_items) |e| {
        try expectEqual(e, queue.removeMax());
    }
}

test "std.PriorityDequeue: fromOwnedSlice trivial case 0" {
    const items = [0]u32{};
    const queue_items = try testing.allocator.dupe(u32, &items);
    var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
    defer queue.deinit();
    try expectEqual(@as(usize, 0), queue.len);
    try expect(queue.removeMinOrNull() == null);
}

test "std.PriorityDequeue: fromOwnedSlice trivial case 1" {
    const items = [1]u32{1};
    const queue_items = try testing.allocator.dupe(u32, &items);
    var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
    defer queue.deinit();

    try expectEqual(@as(usize, 1), queue.len);
    try expectEqual(items[0], queue.removeMin());
    try expect(queue.removeMinOrNull() == null);
}

test "std.PriorityDequeue: fromOwnedSlice" {
    const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
    const queue_items = try testing.allocator.dupe(u32, items[0..]);
    var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
    defer queue.deinit();

    const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
    for (sorted_items) |e| {
        try expectEqual(e, queue.removeMin());
    }
}

test "std.PriorityDequeue: update min queue" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(55);
    try queue.add(44);
    try queue.add(11);
    try queue.update(55, 5);
    try queue.update(44, 4);
    try queue.update(11, 1);
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 4), queue.removeMin());
    try expectEqual(@as(u32, 5), queue.removeMin());
}

test "std.PriorityDequeue: update same min queue" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(1);
    try queue.add(1);
    try queue.add(2);
    try queue.add(2);
    try queue.update(1, 5);
    try queue.update(2, 4);
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectEqual(@as(u32, 2), queue.removeMin());
    try expectEqual(@as(u32, 4), queue.removeMin());
    try expectEqual(@as(u32, 5), queue.removeMin());
}

test "std.PriorityDequeue: update max queue" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(55);
    try queue.add(44);
    try queue.add(11);
    try queue.update(55, 5);
    try queue.update(44, 1);
    try queue.update(11, 4);

    try expectEqual(@as(u32, 5), queue.removeMax());
    try expectEqual(@as(u32, 4), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
}

test "std.PriorityDequeue: update same max queue" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(1);
    try queue.add(1);
    try queue.add(2);
    try queue.add(2);
    try queue.update(1, 5);
    try queue.update(2, 4);
    try expectEqual(@as(u32, 5), queue.removeMax());
    try expectEqual(@as(u32, 4), queue.removeMax());
    try expectEqual(@as(u32, 2), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
}

test "std.PriorityDequeue: update after remove" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(1);
    try expectEqual(@as(u32, 1), queue.removeMin());
    try expectError(error.ElementNotFound, queue.update(1, 1));
}

test "std.PriorityDequeue: iterator" {
    var queue = PDQ.init(testing.allocator, {});
    var map = std.AutoHashMap(u32, void).init(testing.allocator);
    defer {
        queue.deinit();
        map.deinit();
    }

    const items = [_]u32{ 54, 12, 7, 23, 25, 13 };
    for (items) |e| {
        _ = try queue.add(e);
        _ = try map.put(e, {});
    }

    var it = queue.iterator();
    while (it.next()) |e| {
        _ = map.remove(e);
    }

    try expectEqual(@as(usize, 0), map.count());
}

test "std.PriorityDequeue: remove at index" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.add(3);
    try queue.add(2);
    try queue.add(1);

    var it = queue.iterator();
    var elem = it.next();
    var idx: usize = 0;
    const two_idx = while (elem != null) : (elem = it.next()) {
        if (elem.? == 2)
            break idx;
        idx += 1;
    } else unreachable;

    try expectEqual(queue.removeIndex(two_idx), 2);
    try expectEqual(queue.removeMin(), 1);
    try expectEqual(queue.removeMin(), 3);
    try expectEqual(queue.removeMinOrNull(), null);
}

test "std.PriorityDequeue: iterator while empty" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    var it = queue.iterator();

    try expectEqual(it.next(), null);
}

test "std.PriorityDequeue: shrinkAndFree" {
    var queue = PDQ.init(testing.allocator, {});
    defer queue.deinit();

    try queue.ensureTotalCapacity(4);
    try expect(queue.capacity() >= 4);

    try queue.add(1);
    try queue.add(2);
    try queue.add(3);
    try expect(queue.capacity() >= 4);
    try expectEqual(@as(usize, 3), queue.len);

    queue.shrinkAndFree(3);
    try expectEqual(@as(usize, 3), queue.capacity());
    try expectEqual(@as(usize, 3), queue.len);

    try expectEqual(@as(u32, 3), queue.removeMax());
    try expectEqual(@as(u32, 2), queue.removeMax());
    try expectEqual(@as(u32, 1), queue.removeMax());
    try expect(queue.removeMaxOrNull() == null);
}

test "std.PriorityDequeue: fuzz testing min" {
    var prng = std.rand.DefaultPrng.init(0x12345678);
    const random = prng.random();

    const test_case_count = 100;
    const queue_size = 1_000;

    var i: usize = 0;
    while (i < test_case_count) : (i += 1) {
        try fuzzTestMin(random, queue_size);
    }
}

fn fuzzTestMin(rng: std.rand.Random, comptime queue_size: usize) !void {
    const allocator = testing.allocator;
    const items = try generateRandomSlice(allocator, rng, queue_size);

    var queue = PDQ.fromOwnedSlice(allocator, items, {});
    defer queue.deinit();

    var last_removed: ?u32 = null;
    while (queue.removeMinOrNull()) |next| {
        if (last_removed) |last| {
            try expect(last <= next);
        }
        last_removed = next;
    }
}

test "std.PriorityDequeue: fuzz testing max" {
    var prng = std.rand.DefaultPrng.init(0x87654321);
    const random = prng.random();

    const test_case_count = 100;
    const queue_size = 1_000;

    var i: usize = 0;
    while (i < test_case_count) : (i += 1) {
        try fuzzTestMax(random, queue_size);
    }
}

fn fuzzTestMax(rng: std.rand.Random, queue_size: usize) !void {
    const allocator = testing.allocator;
    const items = try generateRandomSlice(allocator, rng, queue_size);

    var queue = PDQ.fromOwnedSlice(testing.allocator, items, {});
    defer queue.deinit();

    var last_removed: ?u32 = null;
    while (queue.removeMaxOrNull()) |next| {
        if (last_removed) |last| {
            try expect(last >= next);
        }
        last_removed = next;
    }
}

test "std.PriorityDequeue: fuzz testing min and max" {
    var prng = std.rand.DefaultPrng.init(0x87654321);
    const random = prng.random();

    const test_case_count = 100;
    const queue_size = 1_000;

    var i: usize = 0;
    while (i < test_case_count) : (i += 1) {
        try fuzzTestMinMax(random, queue_size);
    }
}

fn fuzzTestMinMax(rng: std.rand.Random, queue_size: usize) !void {
    const allocator = testing.allocator;
    const items = try generateRandomSlice(allocator, rng, queue_size);

    var queue = PDQ.fromOwnedSlice(allocator, items, {});
    defer queue.deinit();

    var last_min: ?u32 = null;
    var last_max: ?u32 = null;
    var i: usize = 0;
    while (i < queue_size) : (i += 1) {
        if (i % 2 == 0) {
            const next = queue.removeMin();
            if (last_min) |last| {
                try expect(last <= next);
            }
            last_min = next;
        } else {
            const next = queue.removeMax();
            if (last_max) |last| {
                try expect(last >= next);
            }
            last_max = next;
        }
    }
}

fn generateRandomSlice(allocator: std.mem.Allocator, rng: std.rand.Random, size: usize) ![]u32 {
    var array = std.ArrayList(u32).init(allocator);
    try array.ensureTotalCapacity(size);

    var i: usize = 0;
    while (i < size) : (i += 1) {
        const elem = rng.int(u32);
        try array.append(elem);
    }

    return array.toOwnedSlice();
}

fn contextLessThanComparison(context: []const u32, a: usize, b: usize) Order {
    return std.math.order(context[a], context[b]);
}

const CPDQ = PriorityDequeue(usize, []const u32, contextLessThanComparison);

test "std.PriorityDequeue: add and remove" {
    const context = [_]u32{ 5, 3, 4, 2, 2, 8, 0 };

    var queue = CPDQ.init(testing.allocator, context[0..]);
    defer queue.deinit();

    try queue.add(0);
    try queue.add(1);
    try queue.add(2);
    try queue.add(3);
    try queue.add(4);
    try queue.add(5);
    try queue.add(6);
    try expectEqual(@as(usize, 6), queue.removeMin());
    try expectEqual(@as(usize, 5), queue.removeMax());
    try expectEqual(@as(usize, 3), queue.removeMin());
    try expectEqual(@as(usize, 0), queue.removeMax());
    try expectEqual(@as(usize, 4), queue.removeMin());
    try expectEqual(@as(usize, 2), queue.removeMax());
    try expectEqual(@as(usize, 1), queue.removeMin());
}

var all_cmps_unique = true;

test "std.PriorityDeque: don't compare a value to a copy of itself" {
    var depq = PriorityDequeue(u32, void, struct {
        fn uniqueLessThan(_: void, a: u32, b: u32) Order {
            all_cmps_unique = all_cmps_unique and (a != b);
            return std.math.order(a, b);
        }
    }.uniqueLessThan).init(testing.allocator, {});
    defer depq.deinit();

    try depq.add(1);
    try depq.add(2);
    try depq.add(3);
    try depq.add(4);
    try depq.add(5);
    try depq.add(6);

    _ = depq.removeIndex(2);
    try expectEqual(all_cmps_unique, true);
}