1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
const std = @import("../std.zig");
const builtin = std.builtin;
const mem = std.mem;
const debug = std.debug;
const testing = std.testing;
const warn = debug.warn;
const meta = @import("../meta.zig");
pub const TraitFn = fn (type) bool;
pub fn multiTrait(comptime traits: var) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
inline for (traits) |t|
if (!t(T)) return false;
return true;
}
};
return Closure.trait;
}
test "std.meta.trait.multiTrait" {
const Vector2 = struct {
const MyType = @This();
x: u8,
y: u8,
pub fn add(self: MyType, other: MyType) MyType {
return MyType{
.x = self.x + other.x,
.y = self.y + other.y,
};
}
};
const isVector = multiTrait(.{
hasFn("add"),
hasField("x"),
hasField("y"),
});
testing.expect(isVector(Vector2));
testing.expect(!isVector(u8));
}
pub fn hasFn(comptime name: []const u8) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
if (!comptime isContainer(T)) return false;
if (!comptime @hasDecl(T, name)) return false;
const DeclType = @TypeOf(@field(T, name));
return @typeInfo(DeclType) == .Fn;
}
};
return Closure.trait;
}
test "std.meta.trait.hasFn" {
const TestStruct = struct {
pub fn useless() void {}
};
testing.expect(hasFn("useless")(TestStruct));
testing.expect(!hasFn("append")(TestStruct));
testing.expect(!hasFn("useless")(u8));
}
pub fn hasField(comptime name: []const u8) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
const fields = switch (@typeInfo(T)) {
.Struct => |s| s.fields,
.Union => |u| u.fields,
.Enum => |e| e.fields,
else => return false,
};
inline for (fields) |field| {
if (mem.eql(u8, field.name, name)) return true;
}
return false;
}
};
return Closure.trait;
}
test "std.meta.trait.hasField" {
const TestStruct = struct {
value: u32,
};
testing.expect(hasField("value")(TestStruct));
testing.expect(!hasField("value")(*TestStruct));
testing.expect(!hasField("x")(TestStruct));
testing.expect(!hasField("x")(**TestStruct));
testing.expect(!hasField("value")(u8));
}
pub fn is(comptime id: builtin.TypeId) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
return id == @typeInfo(T);
}
};
return Closure.trait;
}
test "std.meta.trait.is" {
testing.expect(is(.Int)(u8));
testing.expect(!is(.Int)(f32));
testing.expect(is(.Pointer)(*u8));
testing.expect(is(.Void)(void));
testing.expect(!is(.Optional)(anyerror));
}
pub fn isPtrTo(comptime id: builtin.TypeId) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
if (!comptime isSingleItemPtr(T)) return false;
return id == @typeInfo(meta.Child(T));
}
};
return Closure.trait;
}
test "std.meta.trait.isPtrTo" {
testing.expect(!isPtrTo(.Struct)(struct {}));
testing.expect(isPtrTo(.Struct)(*struct {}));
testing.expect(!isPtrTo(.Struct)(**struct {}));
}
pub fn isSliceOf(comptime id: builtin.TypeId) TraitFn {
const Closure = struct {
pub fn trait(comptime T: type) bool {
if (!comptime isSlice(T)) return false;
return id == @typeInfo(meta.Child(T));
}
};
return Closure.trait;
}
test "std.meta.trait.isSliceOf" {
testing.expect(!isSliceOf(.Struct)(struct {}));
testing.expect(isSliceOf(.Struct)([]struct {}));
testing.expect(!isSliceOf(.Struct)([][]struct {}));
}
///////////Strait trait Fns
//@TODO:
// Somewhat limited since we can't apply this logic to normal variables, fields, or
// Fns yet. Should be isExternType?
pub fn isExtern(comptime T: type) bool {
return switch (@typeInfo(T)) {
.Struct => |s| s.layout == .Extern,
.Union => |u| u.layout == .Extern,
.Enum => |e| e.layout == .Extern,
else => false,
};
}
test "std.meta.trait.isExtern" {
const TestExStruct = extern struct {};
const TestStruct = struct {};
testing.expect(isExtern(TestExStruct));
testing.expect(!isExtern(TestStruct));
testing.expect(!isExtern(u8));
}
pub fn isPacked(comptime T: type) bool {
return switch (@typeInfo(T)) {
.Struct => |s| s.layout == .Packed,
.Union => |u| u.layout == .Packed,
.Enum => |e| e.layout == .Packed,
else => false,
};
}
test "std.meta.trait.isPacked" {
const TestPStruct = packed struct {};
const TestStruct = struct {};
testing.expect(isPacked(TestPStruct));
testing.expect(!isPacked(TestStruct));
testing.expect(!isPacked(u8));
}
pub fn isUnsignedInt(comptime T: type) bool {
return switch (@typeInfo(T)) {
.Int => |i| !i.is_signed,
else => false,
};
}
test "isUnsignedInt" {
testing.expect(isUnsignedInt(u32) == true);
testing.expect(isUnsignedInt(comptime_int) == false);
testing.expect(isUnsignedInt(i64) == false);
testing.expect(isUnsignedInt(f64) == false);
}
pub fn isSignedInt(comptime T: type) bool {
return switch (@typeInfo(T)) {
.ComptimeInt => true,
.Int => |i| i.is_signed,
else => false,
};
}
test "isSignedInt" {
testing.expect(isSignedInt(u32) == false);
testing.expect(isSignedInt(comptime_int) == true);
testing.expect(isSignedInt(i64) == true);
testing.expect(isSignedInt(f64) == false);
}
pub fn isSingleItemPtr(comptime T: type) bool {
if (comptime is(.Pointer)(T)) {
return @typeInfo(T).Pointer.size == .One;
}
return false;
}
test "std.meta.trait.isSingleItemPtr" {
const array = [_]u8{0} ** 10;
comptime testing.expect(isSingleItemPtr(@TypeOf(&array[0])));
comptime testing.expect(!isSingleItemPtr(@TypeOf(array)));
var runtime_zero: usize = 0;
testing.expect(!isSingleItemPtr(@TypeOf(array[runtime_zero..1])));
}
pub fn isManyItemPtr(comptime T: type) bool {
if (comptime is(.Pointer)(T)) {
return @typeInfo(T).Pointer.size == .Many;
}
return false;
}
test "std.meta.trait.isManyItemPtr" {
const array = [_]u8{0} ** 10;
const mip = @ptrCast([*]const u8, &array[0]);
testing.expect(isManyItemPtr(@TypeOf(mip)));
testing.expect(!isManyItemPtr(@TypeOf(array)));
testing.expect(!isManyItemPtr(@TypeOf(array[0..1])));
}
pub fn isSlice(comptime T: type) bool {
if (comptime is(.Pointer)(T)) {
return @typeInfo(T).Pointer.size == .Slice;
}
return false;
}
test "std.meta.trait.isSlice" {
const array = [_]u8{0} ** 10;
var runtime_zero: usize = 0;
testing.expect(isSlice(@TypeOf(array[runtime_zero..])));
testing.expect(!isSlice(@TypeOf(array)));
testing.expect(!isSlice(@TypeOf(&array[0])));
}
pub fn isIndexable(comptime T: type) bool {
if (comptime is(.Pointer)(T)) {
if (@typeInfo(T).Pointer.size == .One) {
return (comptime is(.Array)(meta.Child(T)));
}
return true;
}
return comptime is(.Array)(T) or is(.Vector)(T);
}
test "std.meta.trait.isIndexable" {
const array = [_]u8{0} ** 10;
const slice = @as([]const u8, &array);
const vector: meta.Vector(2, u32) = [_]u32{0} ** 2;
testing.expect(isIndexable(@TypeOf(array)));
testing.expect(isIndexable(@TypeOf(&array)));
testing.expect(isIndexable(@TypeOf(slice)));
testing.expect(!isIndexable(meta.Child(@TypeOf(slice))));
testing.expect(isIndexable(@TypeOf(vector)));
}
pub fn isNumber(comptime T: type) bool {
return switch (@typeInfo(T)) {
.Int, .Float, .ComptimeInt, .ComptimeFloat => true,
else => false,
};
}
test "std.meta.trait.isNumber" {
const NotANumber = struct {
number: u8,
};
testing.expect(isNumber(u32));
testing.expect(isNumber(f32));
testing.expect(isNumber(u64));
testing.expect(isNumber(@TypeOf(102)));
testing.expect(isNumber(@TypeOf(102.123)));
testing.expect(!isNumber([]u8));
testing.expect(!isNumber(NotANumber));
}
pub fn isConstPtr(comptime T: type) bool {
if (!comptime is(.Pointer)(T)) return false;
return @typeInfo(T).Pointer.is_const;
}
test "std.meta.trait.isConstPtr" {
var t = @as(u8, 0);
const c = @as(u8, 0);
testing.expect(isConstPtr(*const @TypeOf(t)));
testing.expect(isConstPtr(@TypeOf(&c)));
testing.expect(!isConstPtr(*@TypeOf(t)));
testing.expect(!isConstPtr(@TypeOf(6)));
}
pub fn isContainer(comptime T: type) bool {
return switch (@typeInfo(T)) {
.Struct, .Union, .Enum => true,
else => false,
};
}
test "std.meta.trait.isContainer" {
const TestStruct = struct {};
const TestUnion = union {
a: void,
};
const TestEnum = enum {
A,
B,
};
testing.expect(isContainer(TestStruct));
testing.expect(isContainer(TestUnion));
testing.expect(isContainer(TestEnum));
testing.expect(!isContainer(u8));
}
pub fn hasDecls(comptime T: type, comptime names: var) bool {
inline for (names) |name| {
if (!@hasDecl(T, name))
return false;
}
return true;
}
test "std.meta.trait.hasDecls" {
const TestStruct1 = struct {};
const TestStruct2 = struct {
pub var a: u32;
pub var b: u32;
c: bool,
pub fn useless() void {}
};
const tuple = .{ "a", "b", "c" };
testing.expect(!hasDecls(TestStruct1, .{"a"}));
testing.expect(hasDecls(TestStruct2, .{ "a", "b" }));
testing.expect(hasDecls(TestStruct2, .{ "a", "b", "useless" }));
testing.expect(!hasDecls(TestStruct2, .{ "a", "b", "c" }));
testing.expect(!hasDecls(TestStruct2, tuple));
}
pub fn hasFields(comptime T: type, comptime names: var) bool {
inline for (names) |name| {
if (!@hasField(T, name))
return false;
}
return true;
}
test "std.meta.trait.hasFields" {
const TestStruct1 = struct {};
const TestStruct2 = struct {
a: u32,
b: u32,
c: bool,
pub fn useless() void {}
};
const tuple = .{ "a", "b", "c" };
testing.expect(!hasFields(TestStruct1, .{"a"}));
testing.expect(hasFields(TestStruct2, .{ "a", "b" }));
testing.expect(hasFields(TestStruct2, .{ "a", "b", "c" }));
testing.expect(hasFields(TestStruct2, tuple));
testing.expect(!hasFields(TestStruct2, .{ "a", "b", "useless" }));
}
pub fn hasFunctions(comptime T: type, comptime names: var) bool {
inline for (names) |name| {
if (!hasFn(name)(T))
return false;
}
return true;
}
test "std.meta.trait.hasFunctions" {
const TestStruct1 = struct {};
const TestStruct2 = struct {
pub fn a() void {}
fn b() void {}
};
const tuple = .{ "a", "b", "c" };
testing.expect(!hasFunctions(TestStruct1, .{"a"}));
testing.expect(hasFunctions(TestStruct2, .{ "a", "b" }));
testing.expect(!hasFunctions(TestStruct2, .{ "a", "b", "c" }));
testing.expect(!hasFunctions(TestStruct2, tuple));
}
|