aboutsummaryrefslogtreecommitdiff
path: root/lib/std/mem/Allocator.zig
blob: 11fab03cee1a7a960a99941f22f8c020a932b202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
//! The standard memory allocation interface.

const std = @import("../std.zig");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Allocator = @This();

pub const Error = error{OutOfMemory};

/// Attempt to allocate at least `len` bytes aligned to `ptr_align`.
///
/// If `len_align` is `0`, then the length returned MUST be exactly `len` bytes,
/// otherwise, the length must be aligned to `len_align`.
///
/// `len` must be greater than or equal to `len_align` and must be aligned by `len_align`.
///
/// `ret_addr` is optionally provided as the first return address of the allocation call stack.
/// If the value is `0` it means no return address has been provided.
allocFn: fn (self: *Allocator, len: usize, ptr_align: u29, len_align: u29, ret_addr: usize) Error![]u8,

/// Attempt to expand or shrink memory in place. `buf.len` must equal the most recent
/// length returned by `allocFn` or `resizeFn`. `buf_align` must equal the same value
/// that was passed as the `ptr_align` parameter to the original `allocFn` call.
///
/// Passing a `new_len` of 0 frees and invalidates the buffer such that it can no
/// longer be passed to `resizeFn`.
///
/// error.OutOfMemory can only be returned if `new_len` is greater than `buf.len`.
/// If `buf` cannot be expanded to accomodate `new_len`, then the allocation MUST be
/// unmodified and error.OutOfMemory MUST be returned.
///
/// If `len_align` is `0`, then the length returned MUST be exactly `len` bytes,
/// otherwise, the length must be aligned to `len_align`. Note that `len_align` does *not*
/// provide a way to modify the alignment of a pointer. Rather it provides an API for
/// accepting more bytes of memory from the allocator than requested.
///
/// `new_len` must be greater than or equal to `len_align` and must be aligned by `len_align`.
///
/// `ret_addr` is optionally provided as the first return address of the allocation call stack.
/// If the value is `0` it means no return address has been provided.
resizeFn: fn (self: *Allocator, buf: []u8, buf_align: u29, new_len: usize, len_align: u29, ret_addr: usize) Error!usize,

/// Set to resizeFn if in-place resize is not supported.
pub fn noResize(
    self: *Allocator,
    buf: []u8,
    buf_align: u29,
    new_len: usize,
    len_align: u29,
    ret_addr: usize,
) Error!usize {
    if (new_len > buf.len)
        return error.OutOfMemory;
    return new_len;
}

/// Realloc is used to modify the size or alignment of an existing allocation,
/// as well as to provide the allocator with an opportunity to move an allocation
/// to a better location.
/// When the size/alignment is greater than the previous allocation, this function
/// returns `error.OutOfMemory` when the requested new allocation could not be granted.
/// When the size/alignment is less than or equal to the previous allocation,
/// this function returns `error.OutOfMemory` when the allocator decides the client
/// would be better off keeping the extra alignment/size. Clients will call
/// `resizeFn` when they require the allocator to track a new alignment/size,
/// and so this function should only return success when the allocator considers
/// the reallocation desirable from the allocator's perspective.
/// As an example, `std.ArrayList` tracks a "capacity", and therefore can handle
/// reallocation failure, even when `new_n` <= `old_mem.len`. A `FixedBufferAllocator`
/// would always return `error.OutOfMemory` for `reallocFn` when the size/alignment
/// is less than or equal to the old allocation, because it cannot reclaim the memory,
/// and thus the `std.ArrayList` would be better off retaining its capacity.
/// When `reallocFn` returns,
/// `return_value[0..min(old_mem.len, new_byte_count)]` must be the same
/// as `old_mem` was when `reallocFn` is called. The bytes of
/// `return_value[old_mem.len..]` have undefined values.
/// The returned slice must have its pointer aligned at least to `new_alignment` bytes.
fn reallocBytes(
    self: *Allocator,
    /// Guaranteed to be the same as what was returned from most recent call to
    /// `allocFn` or `resizeFn`.
    /// If `old_mem.len == 0` then this is a new allocation and `new_byte_count`
    /// is guaranteed to be >= 1.
    old_mem: []u8,
    /// If `old_mem.len == 0` then this is `undefined`, otherwise:
    /// Guaranteed to be the same as what was passed to `allocFn`.
    /// Guaranteed to be >= 1.
    /// Guaranteed to be a power of 2.
    old_alignment: u29,
    /// If `new_byte_count` is 0 then this is a free and it is guaranteed that
    /// `old_mem.len != 0`.
    new_byte_count: usize,
    /// Guaranteed to be >= 1.
    /// Guaranteed to be a power of 2.
    /// Returned slice's pointer must have this alignment.
    new_alignment: u29,
    /// 0 indicates the length of the slice returned MUST match `new_byte_count` exactly
    /// non-zero means the length of the returned slice must be aligned by `len_align`
    /// `new_len` must be aligned by `len_align`
    len_align: u29,
    return_address: usize,
) Error![]u8 {
    if (old_mem.len == 0) {
        const new_mem = try self.allocFn(self, new_byte_count, new_alignment, len_align, return_address);
        // TODO: https://github.com/ziglang/zig/issues/4298
        @memset(new_mem.ptr, undefined, new_byte_count);
        return new_mem;
    }

    if (mem.isAligned(@ptrToInt(old_mem.ptr), new_alignment)) {
        if (new_byte_count <= old_mem.len) {
            const shrunk_len = self.shrinkBytes(old_mem, old_alignment, new_byte_count, len_align, return_address);
            return old_mem.ptr[0..shrunk_len];
        }
        if (self.resizeFn(self, old_mem, old_alignment, new_byte_count, len_align, return_address)) |resized_len| {
            assert(resized_len >= new_byte_count);
            // TODO: https://github.com/ziglang/zig/issues/4298
            @memset(old_mem.ptr + new_byte_count, undefined, resized_len - new_byte_count);
            return old_mem.ptr[0..resized_len];
        } else |_| {}
    }
    if (new_byte_count <= old_mem.len and new_alignment <= old_alignment) {
        return error.OutOfMemory;
    }
    return self.moveBytes(old_mem, old_alignment, new_byte_count, new_alignment, len_align, return_address);
}

/// Move the given memory to a new location in the given allocator to accomodate a new
/// size and alignment.
fn moveBytes(
    self: *Allocator,
    old_mem: []u8,
    old_align: u29,
    new_len: usize,
    new_alignment: u29,
    len_align: u29,
    return_address: usize,
) Error![]u8 {
    assert(old_mem.len > 0);
    assert(new_len > 0);
    const new_mem = try self.allocFn(self, new_len, new_alignment, len_align, return_address);
    @memcpy(new_mem.ptr, old_mem.ptr, math.min(new_len, old_mem.len));
    // TODO DISABLED TO AVOID BUGS IN TRANSLATE C
    // TODO see also https://github.com/ziglang/zig/issues/4298
    // use './zig build test-translate-c' to reproduce, some of the symbols in the
    // generated C code will be a sequence of 0xaa (the undefined value), meaning
    // it is printing data that has been freed
    //@memset(old_mem.ptr, undefined, old_mem.len);
    _ = self.shrinkBytes(old_mem, old_align, 0, 0, return_address);
    return new_mem;
}

/// Returns a pointer to undefined memory.
/// Call `destroy` with the result to free the memory.
pub fn create(self: *Allocator, comptime T: type) Error!*T {
    if (@sizeOf(T) == 0) return @as(*T, undefined);
    const slice = try self.allocAdvancedWithRetAddr(T, null, 1, .exact, @returnAddress());
    return &slice[0];
}

/// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property.
pub fn destroy(self: *Allocator, ptr: anytype) void {
    const info = @typeInfo(@TypeOf(ptr)).Pointer;
    const T = info.child;
    if (@sizeOf(T) == 0) return;
    const non_const_ptr = @intToPtr([*]u8, @ptrToInt(ptr));
    _ = self.shrinkBytes(non_const_ptr[0..@sizeOf(T)], info.alignment, 0, 0, @returnAddress());
}

/// Allocates an array of `n` items of type `T` and sets all the
/// items to `undefined`. Depending on the Allocator
/// implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn alloc(self: *Allocator, comptime T: type, n: usize) Error![]T {
    return self.allocAdvancedWithRetAddr(T, null, n, .exact, @returnAddress());
}

pub fn allocWithOptions(
    self: *Allocator,
    comptime Elem: type,
    n: usize,
    /// null means naturally aligned
    comptime optional_alignment: ?u29,
    comptime optional_sentinel: ?Elem,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
    return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress());
}

pub fn allocWithOptionsRetAddr(
    self: *Allocator,
    comptime Elem: type,
    n: usize,
    /// null means naturally aligned
    comptime optional_alignment: ?u29,
    comptime optional_sentinel: ?Elem,
    return_address: usize,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
    if (optional_sentinel) |sentinel| {
        const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, .exact, return_address);
        ptr[n] = sentinel;
        return ptr[0..n :sentinel];
    } else {
        return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, .exact, return_address);
    }
}

fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type {
    if (sentinel) |s| {
        return [:s]align(alignment orelse @alignOf(Elem)) Elem;
    } else {
        return []align(alignment orelse @alignOf(Elem)) Elem;
    }
}

/// Allocates an array of `n + 1` items of type `T` and sets the first `n`
/// items to `undefined` and the last item to `sentinel`. Depending on the
/// Allocator implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn allocSentinel(
    self: *Allocator,
    comptime Elem: type,
    n: usize,
    comptime sentinel: Elem,
) Error![:sentinel]Elem {
    return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress());
}

/// Deprecated: use `allocAdvanced`
pub fn alignedAlloc(
    self: *Allocator,
    comptime T: type,
    /// null means naturally aligned
    comptime alignment: ?u29,
    n: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
    return self.allocAdvancedWithRetAddr(T, alignment, n, .exact, @returnAddress());
}

pub fn allocAdvanced(
    self: *Allocator,
    comptime T: type,
    /// null means naturally aligned
    comptime alignment: ?u29,
    n: usize,
    exact: Exact,
) Error![]align(alignment orelse @alignOf(T)) T {
    return self.allocAdvancedWithRetAddr(T, alignment, n, exact, @returnAddress());
}

pub const Exact = enum { exact, at_least };

pub fn allocAdvancedWithRetAddr(
    self: *Allocator,
    comptime T: type,
    /// null means naturally aligned
    comptime alignment: ?u29,
    n: usize,
    exact: Exact,
    return_address: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
    const a = if (alignment) |a| blk: {
        if (a == @alignOf(T)) return allocAdvancedWithRetAddr(self, T, null, n, exact, return_address);
        break :blk a;
    } else @alignOf(T);

    if (n == 0) {
        return @as([*]align(a) T, undefined)[0..0];
    }

    const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory;
    // TODO The `if (alignment == null)` blocks are workarounds for zig not being able to
    // access certain type information about T without creating a circular dependency in async
    // functions that heap-allocate their own frame with @Frame(func).
    const size_of_T = if (alignment == null) @intCast(u29, @divExact(byte_count, n)) else @sizeOf(T);
    const len_align: u29 = switch (exact) {
        .exact => 0,
        .at_least => size_of_T,
    };
    const byte_slice = try self.allocFn(self, byte_count, a, len_align, return_address);
    switch (exact) {
        .exact => assert(byte_slice.len == byte_count),
        .at_least => assert(byte_slice.len >= byte_count),
    }
    // TODO: https://github.com/ziglang/zig/issues/4298
    @memset(byte_slice.ptr, undefined, byte_slice.len);
    if (alignment == null) {
        // This if block is a workaround (see comment above)
        return @intToPtr([*]T, @ptrToInt(byte_slice.ptr))[0..@divExact(byte_slice.len, @sizeOf(T))];
    } else {
        return mem.bytesAsSlice(T, @alignCast(a, byte_slice));
    }
}

/// Increases or decreases the size of an allocation. It is guaranteed to not move the pointer.
pub fn resize(self: *Allocator, old_mem: anytype, new_n: usize) Error!@TypeOf(old_mem) {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    const T = Slice.child;
    if (new_n == 0) {
        self.free(old_mem);
        return &[0]T{};
    }
    const old_byte_slice = mem.sliceAsBytes(old_mem);
    const new_byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
    const rc = try self.resizeFn(self, old_byte_slice, Slice.alignment, new_byte_count, 0, @returnAddress());
    assert(rc == new_byte_count);
    const new_byte_slice = old_mem.ptr[0..new_byte_count];
    return mem.bytesAsSlice(T, new_byte_slice);
}

/// This function requests a new byte size for an existing allocation,
/// which can be larger, smaller, or the same size as the old memory
/// allocation.
/// This function is preferred over `shrink`, because it can fail, even
/// when shrinking. This gives the allocator a chance to perform a
/// cheap shrink operation if possible, or otherwise return OutOfMemory,
/// indicating that the caller should keep their capacity, for example
/// in `std.ArrayList.shrink`.
/// If you need guaranteed success, call `shrink`.
/// If `new_n` is 0, this is the same as `free` and it always succeeds.
pub fn realloc(self: *Allocator, old_mem: anytype, new_n: usize) t: {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    break :t Error![]align(Slice.alignment) Slice.child;
} {
    const old_alignment = @typeInfo(@TypeOf(old_mem)).Pointer.alignment;
    return self.reallocAdvancedWithRetAddr(old_mem, old_alignment, new_n, .exact, @returnAddress());
}

pub fn reallocAtLeast(self: *Allocator, old_mem: anytype, new_n: usize) t: {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    break :t Error![]align(Slice.alignment) Slice.child;
} {
    const old_alignment = @typeInfo(@TypeOf(old_mem)).Pointer.alignment;
    return self.reallocAdvancedWithRetAddr(old_mem, old_alignment, new_n, .at_least, @returnAddress());
}

/// This is the same as `realloc`, except caller may additionally request
/// a new alignment, which can be larger, smaller, or the same as the old
/// allocation.
pub fn reallocAdvanced(
    self: *Allocator,
    old_mem: anytype,
    comptime new_alignment: u29,
    new_n: usize,
    exact: Exact,
) Error![]align(new_alignment) @typeInfo(@TypeOf(old_mem)).Pointer.child {
    return self.reallocAdvancedWithRetAddr(old_mem, new_alignment, new_n, exact, @returnAddress());
}

pub fn reallocAdvancedWithRetAddr(
    self: *Allocator,
    old_mem: anytype,
    comptime new_alignment: u29,
    new_n: usize,
    exact: Exact,
    return_address: usize,
) Error![]align(new_alignment) @typeInfo(@TypeOf(old_mem)).Pointer.child {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    const T = Slice.child;
    if (old_mem.len == 0) {
        return self.allocAdvancedWithRetAddr(T, new_alignment, new_n, exact, return_address);
    }
    if (new_n == 0) {
        self.free(old_mem);
        return @as([*]align(new_alignment) T, undefined)[0..0];
    }

    const old_byte_slice = mem.sliceAsBytes(old_mem);
    const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
    // Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure
    const len_align: u29 = switch (exact) {
        .exact => 0,
        .at_least => @sizeOf(T),
    };
    const new_byte_slice = try self.reallocBytes(old_byte_slice, Slice.alignment, byte_count, new_alignment, len_align, return_address);
    return mem.bytesAsSlice(T, @alignCast(new_alignment, new_byte_slice));
}

/// Prefer calling realloc to shrink if you can tolerate failure, such as
/// in an ArrayList data structure with a storage capacity.
/// Shrink always succeeds, and `new_n` must be <= `old_mem.len`.
/// Returned slice has same alignment as old_mem.
/// Shrinking to 0 is the same as calling `free`.
pub fn shrink(self: *Allocator, old_mem: anytype, new_n: usize) t: {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    break :t []align(Slice.alignment) Slice.child;
} {
    const old_alignment = @typeInfo(@TypeOf(old_mem)).Pointer.alignment;
    return self.alignedShrinkWithRetAddr(old_mem, old_alignment, new_n, @returnAddress());
}

/// This is the same as `shrink`, except caller may additionally request
/// a new alignment, which must be smaller or the same as the old
/// allocation.
pub fn alignedShrink(
    self: *Allocator,
    old_mem: anytype,
    comptime new_alignment: u29,
    new_n: usize,
) []align(new_alignment) @typeInfo(@TypeOf(old_mem)).Pointer.child {
    return self.alignedShrinkWithRetAddr(old_mem, new_alignment, new_n, @returnAddress());
}

/// This is the same as `alignedShrink`, except caller may additionally pass
/// the return address of the first stack frame, which may be relevant for
/// allocators which collect stack traces.
pub fn alignedShrinkWithRetAddr(
    self: *Allocator,
    old_mem: anytype,
    comptime new_alignment: u29,
    new_n: usize,
    return_address: usize,
) []align(new_alignment) @typeInfo(@TypeOf(old_mem)).Pointer.child {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    const T = Slice.child;

    if (new_n == old_mem.len)
        return old_mem;
    assert(new_n < old_mem.len);
    assert(new_alignment <= Slice.alignment);

    // Here we skip the overflow checking on the multiplication because
    // new_n <= old_mem.len and the multiplication didn't overflow for that operation.
    const byte_count = @sizeOf(T) * new_n;

    const old_byte_slice = mem.sliceAsBytes(old_mem);
    // TODO: https://github.com/ziglang/zig/issues/4298
    @memset(old_byte_slice.ptr + byte_count, undefined, old_byte_slice.len - byte_count);
    _ = self.shrinkBytes(old_byte_slice, Slice.alignment, byte_count, 0, return_address);
    return old_mem[0..new_n];
}

/// Free an array allocated with `alloc`. To free a single item,
/// see `destroy`.
pub fn free(self: *Allocator, memory: anytype) void {
    const Slice = @typeInfo(@TypeOf(memory)).Pointer;
    const bytes = mem.sliceAsBytes(memory);
    const bytes_len = bytes.len + if (Slice.sentinel != null) @sizeOf(Slice.child) else 0;
    if (bytes_len == 0) return;
    const non_const_ptr = @intToPtr([*]u8, @ptrToInt(bytes.ptr));
    // TODO: https://github.com/ziglang/zig/issues/4298
    @memset(non_const_ptr, undefined, bytes_len);
    _ = self.shrinkBytes(non_const_ptr[0..bytes_len], Slice.alignment, 0, 0, @returnAddress());
}

/// Copies `m` to newly allocated memory. Caller owns the memory.
pub fn dupe(allocator: *Allocator, comptime T: type, m: []const T) ![]T {
    const new_buf = try allocator.alloc(T, m.len);
    mem.copy(T, new_buf, m);
    return new_buf;
}

/// Copies `m` to newly allocated memory, with a null-terminated element. Caller owns the memory.
pub fn dupeZ(allocator: *Allocator, comptime T: type, m: []const T) ![:0]T {
    const new_buf = try allocator.alloc(T, m.len + 1);
    mem.copy(T, new_buf, m);
    new_buf[m.len] = 0;
    return new_buf[0..m.len :0];
}

/// Call `resizeFn`, but caller guarantees that `new_len` <= `buf.len` meaning
/// error.OutOfMemory should be impossible.
/// This function allows a runtime `buf_align` value. Callers should generally prefer
/// to call `shrink` directly.
pub fn shrinkBytes(
    self: *Allocator,
    buf: []u8,
    buf_align: u29,
    new_len: usize,
    len_align: u29,
    return_address: usize,
) usize {
    assert(new_len <= buf.len);
    return self.resizeFn(self, buf, buf_align, new_len, len_align, return_address) catch unreachable;
}