1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
//! The standard memory allocation interface.
const std = @import("../std.zig");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Allocator = @This();
const builtin = @import("builtin");
pub const Error = error{OutOfMemory};
pub const Log2Align = math.Log2Int(usize);
// The type erased pointer to the allocator implementation
ptr: *anyopaque,
vtable: *const VTable,
pub const VTable = struct {
/// Attempt to allocate exactly `len` bytes aligned to `1 << ptr_align`.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
alloc: *const fn (ctx: *anyopaque, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8,
/// Attempt to expand or shrink memory in place. `buf.len` must equal the
/// length requested from the most recent successful call to `alloc` or
/// `resize`. `buf_align` must equal the same value that was passed as the
/// `ptr_align` parameter to the original `alloc` call.
///
/// A result of `true` indicates the resize was successful and the
/// allocation now has the same address but a size of `new_len`. `false`
/// indicates the resize could not be completed without moving the
/// allocation to a different address.
///
/// `new_len` must be greater than zero.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
resize: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, new_len: usize, ret_addr: usize) bool,
/// Free and invalidate a buffer.
///
/// `buf.len` must equal the most recent length returned by `alloc` or
/// given to a successful `resize` call.
///
/// `buf_align` must equal the same value that was passed as the
/// `ptr_align` parameter to the original `alloc` call.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
free: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, ret_addr: usize) void,
};
pub fn noResize(
self: *anyopaque,
buf: []u8,
log2_buf_align: u8,
new_len: usize,
ret_addr: usize,
) bool {
_ = self;
_ = buf;
_ = log2_buf_align;
_ = new_len;
_ = ret_addr;
return false;
}
pub fn noFree(
self: *anyopaque,
buf: []u8,
log2_buf_align: u8,
ret_addr: usize,
) void {
_ = self;
_ = buf;
_ = log2_buf_align;
_ = ret_addr;
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawAlloc(self: Allocator, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8 {
return self.vtable.alloc(self.ptr, len, ptr_align, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawResize(self: Allocator, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize) bool {
return self.vtable.resize(self.ptr, buf, log2_buf_align, new_len, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an Allocator
pub inline fn rawFree(self: Allocator, buf: []u8, log2_buf_align: u8, ret_addr: usize) void {
return self.vtable.free(self.ptr, buf, log2_buf_align, ret_addr);
}
/// Returns a pointer to undefined memory.
/// Call `destroy` with the result to free the memory.
pub fn create(self: Allocator, comptime T: type) Error!*T {
if (@sizeOf(T) == 0) return @as(*T, @ptrFromInt(math.maxInt(usize)));
const ptr: *T = @ptrCast(try self.allocBytesWithAlignment(@alignOf(T), @sizeOf(T), @returnAddress()));
return ptr;
}
/// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property.
pub fn destroy(self: Allocator, ptr: anytype) void {
const info = @typeInfo(@TypeOf(ptr)).Pointer;
if (info.size != .One) @compileError("ptr must be a single item pointer");
const T = info.child;
if (@sizeOf(T) == 0) return;
const non_const_ptr = @as([*]u8, @ptrCast(@constCast(ptr)));
self.rawFree(non_const_ptr[0..@sizeOf(T)], log2a(info.alignment), @returnAddress());
}
/// Allocates an array of `n` items of type `T` and sets all the
/// items to `undefined`. Depending on the Allocator
/// implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn alloc(self: Allocator, comptime T: type, n: usize) Error![]T {
return self.allocAdvancedWithRetAddr(T, null, n, @returnAddress());
}
pub fn allocWithOptions(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress());
}
pub fn allocWithOptionsRetAddr(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
return_address: usize,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
if (optional_sentinel) |sentinel| {
const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, return_address);
ptr[n] = sentinel;
return ptr[0..n :sentinel];
} else {
return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, return_address);
}
}
fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type {
if (sentinel) |s| {
return [:s]align(alignment orelse @alignOf(Elem)) Elem;
} else {
return []align(alignment orelse @alignOf(Elem)) Elem;
}
}
/// Allocates an array of `n + 1` items of type `T` and sets the first `n`
/// items to `undefined` and the last item to `sentinel`. Depending on the
/// Allocator implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn allocSentinel(
self: Allocator,
comptime Elem: type,
n: usize,
comptime sentinel: Elem,
) Error![:sentinel]Elem {
return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress());
}
pub fn alignedAlloc(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
return self.allocAdvancedWithRetAddr(T, alignment, n, @returnAddress());
}
pub inline fn allocAdvancedWithRetAddr(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
return_address: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
const a = alignment orelse @alignOf(T);
const ptr: [*]align(a) T = @ptrCast(try self.allocWithSizeAndAlignment(@sizeOf(T), a, n, return_address));
return ptr[0..n];
}
fn allocWithSizeAndAlignment(self: Allocator, comptime size: usize, comptime alignment: u29, n: usize, return_address: usize) Error![*]align(alignment) u8 {
const byte_count = math.mul(usize, size, n) catch return Error.OutOfMemory;
return self.allocBytesWithAlignment(alignment, byte_count, return_address);
}
fn allocBytesWithAlignment(self: Allocator, comptime alignment: u29, byte_count: usize, return_address: usize) Error![*]align(alignment) u8 {
// The Zig Allocator interface is not intended to solve alignments beyond
// the minimum OS page size. For these use cases, the caller must use OS
// APIs directly.
comptime assert(alignment <= mem.page_size);
if (byte_count == 0) {
const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), alignment);
return @as([*]align(alignment) u8, @ptrFromInt(ptr));
}
const byte_ptr = self.rawAlloc(byte_count, log2a(alignment), return_address) orelse return Error.OutOfMemory;
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(byte_ptr[0..byte_count], undefined);
return @as([*]align(alignment) u8, @alignCast(byte_ptr));
}
/// Requests to modify the size of an allocation. It is guaranteed to not move
/// the pointer, however the allocator implementation may refuse the resize
/// request by returning `false`.
pub fn resize(self: Allocator, old_mem: anytype, new_n: usize) bool {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
const T = Slice.child;
if (new_n == 0) {
self.free(old_mem);
return true;
}
if (old_mem.len == 0) {
return false;
}
const old_byte_slice = mem.sliceAsBytes(old_mem);
// I would like to use saturating multiplication here, but LLVM cannot lower it
// on WebAssembly: https://github.com/ziglang/zig/issues/9660
//const new_byte_count = new_n *| @sizeOf(T);
const new_byte_count = math.mul(usize, @sizeOf(T), new_n) catch return false;
return self.rawResize(old_byte_slice, log2a(Slice.alignment), new_byte_count, @returnAddress());
}
/// This function requests a new byte size for an existing allocation, which
/// can be larger, smaller, or the same size as the old memory allocation.
/// If `new_n` is 0, this is the same as `free` and it always succeeds.
pub fn realloc(self: Allocator, old_mem: anytype, new_n: usize) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
return self.reallocAdvanced(old_mem, new_n, @returnAddress());
}
pub fn reallocAdvanced(
self: Allocator,
old_mem: anytype,
new_n: usize,
return_address: usize,
) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
const T = Slice.child;
if (old_mem.len == 0) {
return self.allocAdvancedWithRetAddr(T, Slice.alignment, new_n, return_address);
}
if (new_n == 0) {
self.free(old_mem);
const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), Slice.alignment);
return @as([*]align(Slice.alignment) T, @ptrFromInt(ptr))[0..0];
}
const old_byte_slice = mem.sliceAsBytes(old_mem);
const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
// Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure
if (mem.isAligned(@intFromPtr(old_byte_slice.ptr), Slice.alignment)) {
if (self.rawResize(old_byte_slice, log2a(Slice.alignment), byte_count, return_address)) {
const new_bytes: []align(Slice.alignment) u8 = @alignCast(old_byte_slice.ptr[0..byte_count]);
return mem.bytesAsSlice(T, new_bytes);
}
}
const new_mem = self.rawAlloc(byte_count, log2a(Slice.alignment), return_address) orelse
return error.OutOfMemory;
const copy_len = @min(byte_count, old_byte_slice.len);
@memcpy(new_mem[0..copy_len], old_byte_slice[0..copy_len]);
// TODO https://github.com/ziglang/zig/issues/4298
@memset(old_byte_slice, undefined);
self.rawFree(old_byte_slice, log2a(Slice.alignment), return_address);
const new_bytes: []align(Slice.alignment) u8 = @alignCast(new_mem[0..byte_count]);
return mem.bytesAsSlice(T, new_bytes);
}
/// Free an array allocated with `alloc`. To free a single item,
/// see `destroy`.
pub fn free(self: Allocator, memory: anytype) void {
const Slice = @typeInfo(@TypeOf(memory)).Pointer;
const bytes = mem.sliceAsBytes(memory);
const bytes_len = bytes.len + if (Slice.sentinel != null) @sizeOf(Slice.child) else 0;
if (bytes_len == 0) return;
const non_const_ptr = @constCast(bytes.ptr);
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(non_const_ptr[0..bytes_len], undefined);
self.rawFree(non_const_ptr[0..bytes_len], log2a(Slice.alignment), @returnAddress());
}
/// Copies `m` to newly allocated memory. Caller owns the memory.
pub fn dupe(allocator: Allocator, comptime T: type, m: []const T) Error![]T {
const new_buf = try allocator.alloc(T, m.len);
@memcpy(new_buf, m);
return new_buf;
}
/// Copies `m` to newly allocated memory, with a null-terminated element. Caller owns the memory.
pub fn dupeZ(allocator: Allocator, comptime T: type, m: []const T) Error![:0]T {
const new_buf = try allocator.alloc(T, m.len + 1);
@memcpy(new_buf[0..m.len], m);
new_buf[m.len] = 0;
return new_buf[0..m.len :0];
}
/// TODO replace callsites with `@log2` after this proposal is implemented:
/// https://github.com/ziglang/zig/issues/13642
inline fn log2a(x: anytype) switch (@typeInfo(@TypeOf(x))) {
.Int => math.Log2Int(@TypeOf(x)),
.ComptimeInt => comptime_int,
else => @compileError("int please"),
} {
switch (@typeInfo(@TypeOf(x))) {
.Int => return math.log2_int(@TypeOf(x), x),
.ComptimeInt => return math.log2(x),
else => @compileError("bad"),
}
}
|