aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/log_int.zig
blob: ea1820bd274850b03d3da64d0458a770ab986108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const assert = std.debug.assert;
const Log2Int = math.Log2Int;

/// Returns the logarithm of `x` for the provided `base`, rounding down to the nearest integer.
/// Asserts that `base > 1` and `x > 0`.
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) {
    const valid = switch (@typeInfo(T)) {
        .ComptimeInt => true,
        .Int => |IntType| IntType.signedness == .unsigned,
        else => false,
    };
    if (!valid) @compileError("log_int requires an unsigned integer, found " ++ @typeName(T));

    assert(base > 1 and x > 0);
    if (base == 2) return math.log2_int(T, x);

    // Let's denote by [y] the integer part of y.

    // Throughout the iteration the following invariant is preserved:
    //     power = base ^ exponent

    // Safety and termination.
    //
    // We never overflow inside the loop because when we enter the loop we have
    //     power <= [maxInt(T) / base]
    // therefore
    //     power * base <= maxInt(T)
    // is a valid multiplication for type `T` and
    //     exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T))
    // is a valid addition for type `Log2Int(T)`.
    //
    // This implies also termination because power is strictly increasing,
    // hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop.

    var exponent: Log2Int(T) = 0;
    var power: T = 1;
    while (power <= x / base) {
        power *= base;
        exponent += 1;
    }

    // If we never entered the loop we must have
    //     [x / base] < 1
    // hence
    //     x <= [x / base] * base < base
    // thus the result is 0. We can then return exponent, which is still 0.
    //
    // Otherwise, if we entered the loop at least once,
    // when we exit the loop we have that power is exactly divisible by base and
    //     power / base <= [x / base] < power
    // hence
    //     power <= [x / base] * base <= x < power * base
    // This means that
    //     base^exponent <= x < base^(exponent+1)
    // hence the result is exponent.

    return exponent;
}

test "math.log_int" {
    // Test all unsigned integers with 2, 3, ..., 64 bits.
    // We cannot test 0 or 1 bits since base must be > 1.
    inline for (2..64 + 1) |bits| {
        const T = @Type(std.builtin.Type{
            .Int = std.builtin.Type.Int{ .signedness = .unsigned, .bits = @intCast(bits) },
        });

        // for base = 2, 3, ..., min(maxInt(T),1024)
        var base: T = 1;
        while (base < math.maxInt(T) and base <= 1024) {
            base += 1;

            // test that `log_int(T, base, 1) == 0`
            try testing.expectEqual(@as(Log2Int(T), 0), log_int(T, base, 1));

            // For powers `pow = base^exp > 1` that fit inside T,
            // test that `log_int` correctly detects the jump in the logarithm
            // from `log(pow-1) == exp-1` to `log(pow) == exp`.
            var exp: Log2Int(T) = 0;
            var pow: T = 1;
            while (pow <= math.maxInt(T) / base) {
                exp += 1;
                pow *= base;

                try testing.expectEqual(exp - 1, log_int(T, base, pow - 1));
                try testing.expectEqual(exp, log_int(T, base, pow));
            }
        }
    }
}

test "math.log_int vs math.log2" {
    const types = [_]type{ u2, u3, u4, u8, u16 };
    inline for (types) |T| {
        var n: T = 0;
        while (n < math.maxInt(T)) {
            n += 1;
            const special = math.log2_int(T, n);
            const general = log_int(T, 2, n);
            try testing.expectEqual(special, general);
        }
    }
}

test "math.log_int vs math.log10" {
    const types = [_]type{ u4, u5, u6, u8, u16 };
    inline for (types) |T| {
        var n: T = 0;
        while (n < math.maxInt(T)) {
            n += 1;
            const special = math.log10_int(n);
            const general = log_int(T, 10, n);
            try testing.expectEqual(special, general);
        }
    }
}

test "math.log_int at comptime" {
    const x = 59049; // 9 ** 5;
    comptime {
        if (math.log_int(comptime_int, 9, x) != 5) {
            @compileError("log(9, 59049) should be 5");
        }
    }
}