1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero.
///
/// Special Cases:
/// - log1p(+inf) = +inf
/// - log1p(+-0) = +-0
/// - log1p(-1) = -inf
/// - log1p(x) = nan if x < -1
/// - log1p(nan) = nan
pub fn log1p(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => log1p_32(x),
f64 => log1p_64(x),
else => @compileError("log1p not implemented for " ++ @typeName(T)),
};
}
fn log1p_32(x: f32) f32 {
const ln2_hi = 6.9313812256e-01;
const ln2_lo = 9.0580006145e-06;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
const u = @bitCast(u32, x);
var ix = u;
var k: i32 = 1;
var f: f32 = undefined;
var c: f32 = undefined;
// 1 + x < sqrt(2)+
if (ix < 0x3ED413D0 or ix >> 31 != 0) {
// x <= -1.0
if (ix >= 0xBF800000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f32);
}
// log1p(x < -1) = nan
else {
return math.nan(f32);
}
}
// |x| < 2^(-24)
if ((ix << 1) < (0x33800000 << 1)) {
// underflow if subnormal
if (ix & 0x7F800000 == 0) {
math.doNotOptimizeAway(x * x);
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (ix <= 0xBE95F619) {
k = 0;
c = 0;
f = x;
}
} else if (ix >= 0x7F800000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
var iu = @bitCast(u32, uf);
iu += 0x3F800000 - 0x3F3504F3;
k = @intCast(i32, iu >> 23) - 0x7F;
// correction to avoid underflow in c / u
if (k < 25) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
f = @bitCast(f32, iu) - 1;
}
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @intToFloat(f32, k);
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
fn log1p_64(x: f64) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 1;
var c: f64 = undefined;
var f: f64 = undefined;
// 1 + x < sqrt(2)
if (hx < 0x3FDA827A or hx >> 31 != 0) {
// x <= -1.0
if (hx >= 0xBFF00000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f64);
}
// log1p(x < -1) = nan
else {
return math.nan(f64);
}
}
// |x| < 2^(-53)
if ((hx << 1) < (0x3CA00000 << 1)) {
if ((hx & 0x7FF00000) == 0) {
math.raiseUnderflow();
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (hx <= 0xBFD2BEC4) {
k = 0;
c = 0;
f = x;
}
} else if (hx >= 0x7FF00000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
const hu = @bitCast(u64, uf);
var iu = @intCast(u32, hu >> 32);
iu += 0x3FF00000 - 0x3FE6A09E;
k = @intCast(i32, iu >> 20) - 0x3FF;
// correction to avoid underflow in c / u
if (k < 54) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
f = @bitCast(f64, iq) - 1;
}
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @intToFloat(f64, k);
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
test "math.log1p" {
try expect(log1p(@as(f32, 0.0)) == log1p_32(0.0));
try expect(log1p(@as(f64, 0.0)) == log1p_64(0.0));
}
test "math.log1p_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log1p_32(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(123123.234375), 11.720949, epsilon));
}
test "math.log1p_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log1p_64(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(123123.234375), 11.720949, epsilon));
}
test "math.log1p_32.special" {
try expect(math.isPositiveInf(log1p_32(math.inf(f32))));
try expect(log1p_32(0.0) == 0.0);
try expect(log1p_32(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_32(-1.0)));
try expect(math.isNan(log1p_32(-2.0)));
try expect(math.isNan(log1p_32(math.nan(f32))));
}
test "math.log1p_64.special" {
try expect(math.isPositiveInf(log1p_64(math.inf(f64))));
try expect(log1p_64(0.0) == 0.0);
try expect(log1p_64(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_64(-1.0)));
try expect(math.isNan(log1p_64(-2.0)));
try expect(math.isNan(log1p_64(math.nan(f64))));
}
|