1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const maxInt = std.math.maxInt;
/// Returns the base-10 logarithm of x.
///
/// Special Cases:
/// - log10(+inf) = +inf
/// - log10(0) = -inf
/// - log10(x) = nan if x < 0
/// - log10(nan) = nan
pub fn log10(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, log10_64(x));
},
.Float => {
return switch (T) {
f32 => log10_32(x),
f64 => log10_64(x),
else => @compileError("log10 not implemented for " ++ @typeName(T)),
};
},
.ComptimeInt => {
return @as(comptime_int, math.floor(log10_64(@as(f64, x))));
},
.Int => {
return @floatToInt(T, math.floor(log10_64(@intToFloat(f64, x))));
},
else => @compileError("log10 not implemented for " ++ @typeName(T)),
}
}
pub fn log10_32(x_: f32) f32 {
const ivln10hi: f32 = 4.3432617188e-01;
const ivln10lo: f32 = -3.1689971365e-05;
const log10_2hi: f32 = 3.0102920532e-01;
const log10_2lo: f32 = 7.9034151668e-07;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
const dk = @intToFloat(f32, k);
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
pub fn log10_64(x_: f64) f64 {
const ivln10hi: f64 = 4.34294481878168880939e-01;
const ivln10lo: f64 = 2.50829467116452752298e-11;
const log10_2hi: f64 = 3.01029995663611771306e-01;
const log10_2lo: f64 = 3.69423907715893078616e-13;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
var val_hi = hi * ivln10hi;
const dk = @intToFloat(f64, k);
const y = dk * log10_2hi;
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
// Extra precision multiplication
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
test "math.log10" {
testing.expect(log10(@as(f32, 0.2)) == log10_32(0.2));
testing.expect(log10(@as(f64, 0.2)) == log10_64(0.2));
}
test "math.log10_32" {
const epsilon = 0.000001;
testing.expect(math.approxEqAbs(f32, log10_32(0.2), -0.698970, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(0.8923), -0.049489, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(1.5), 0.176091, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(37.45), 1.573452, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(89.123), 1.94999, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(123123.234375), 5.09034, epsilon));
}
test "math.log10_64" {
const epsilon = 0.000001;
testing.expect(math.approxEqAbs(f64, log10_64(0.2), -0.698970, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(0.8923), -0.049489, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(1.5), 0.176091, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(37.45), 1.573452, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(89.123), 1.94999, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(123123.234375), 5.09034, epsilon));
}
test "math.log10_32.special" {
testing.expect(math.isPositiveInf(log10_32(math.inf(f32))));
testing.expect(math.isNegativeInf(log10_32(0.0)));
testing.expect(math.isNan(log10_32(-1.0)));
testing.expect(math.isNan(log10_32(math.nan(f32))));
}
test "math.log10_64.special" {
testing.expect(math.isPositiveInf(log10_64(math.inf(f64))));
testing.expect(math.isNegativeInf(log10_64(0.0)));
testing.expect(math.isNan(log10_64(-1.0)));
testing.expect(math.isNan(log10_64(math.nan(f64))));
}
|