aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/float.zig
blob: 6ffbd85bd2404ca2787ef5aba4f68cc576df250e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;

pub fn FloatRepr(comptime Float: type) type {
    const fractional_bits = floatFractionalBits(Float);
    const exponent_bits = floatExponentBits(Float);
    return packed struct {
        const Repr = @This();

        mantissa: StoredMantissa,
        exponent: BiasedExponent,
        sign: std.math.Sign,

        pub const StoredMantissa = @Type(.{ .int = .{
            .signedness = .unsigned,
            .bits = floatMantissaBits(Float),
        } });
        pub const Mantissa = @Type(.{ .int = .{
            .signedness = .unsigned,
            .bits = 1 + fractional_bits,
        } });
        pub const Exponent = @Type(.{ .int = .{
            .signedness = .signed,
            .bits = exponent_bits,
        } });
        pub const BiasedExponent = enum(@Type(.{ .int = .{
            .signedness = .unsigned,
            .bits = exponent_bits,
        } })) {
            denormal = 0,
            min_normal = 1,
            zero = (1 << (exponent_bits - 1)) - 1,
            max_normal = (1 << exponent_bits) - 2,
            infinite = (1 << exponent_bits) - 1,
            _,

            pub const Int = @typeInfo(BiasedExponent).@"enum".tag_type;

            pub fn unbias(biased: BiasedExponent) Exponent {
                switch (biased) {
                    .denormal => unreachable,
                    else => return @bitCast(@intFromEnum(biased) -% @intFromEnum(BiasedExponent.zero)),
                    .infinite => unreachable,
                }
            }

            pub fn bias(unbiased: Exponent) BiasedExponent {
                return @enumFromInt(@intFromEnum(BiasedExponent.zero) +% @as(Int, @bitCast(unbiased)));
            }
        };

        pub const Normalized = struct {
            fraction: Fraction,
            exponent: Normalized.Exponent,

            pub const Fraction = @Type(.{ .int = .{
                .signedness = .unsigned,
                .bits = fractional_bits,
            } });
            pub const Exponent = @Type(.{ .int = .{
                .signedness = .signed,
                .bits = 1 + exponent_bits,
            } });

            /// This currently truncates denormal values, which needs to be fixed before this can be used to
            /// produce a rounded value.
            pub fn reconstruct(normalized: Normalized, sign: std.math.Sign) Float {
                if (normalized.exponent > BiasedExponent.max_normal.unbias()) return @bitCast(Repr{
                    .mantissa = 0,
                    .exponent = .infinite,
                    .sign = sign,
                });
                const mantissa = @as(Mantissa, 1 << fractional_bits) | normalized.fraction;
                if (normalized.exponent < BiasedExponent.min_normal.unbias()) return @bitCast(Repr{
                    .mantissa = @truncate(std.math.shr(
                        Mantissa,
                        mantissa,
                        BiasedExponent.min_normal.unbias() - normalized.exponent,
                    )),
                    .exponent = .denormal,
                    .sign = sign,
                });
                return @bitCast(Repr{
                    .mantissa = @truncate(mantissa),
                    .exponent = .bias(@intCast(normalized.exponent)),
                    .sign = sign,
                });
            }
        };

        pub const Classified = union(enum) { normalized: Normalized, infinity, nan, invalid };
        fn classify(repr: Repr) Classified {
            return switch (repr.exponent) {
                .denormal => {
                    const mantissa: Mantissa = repr.mantissa;
                    const shift = @clz(mantissa);
                    return .{ .normalized = .{
                        .fraction = @truncate(mantissa << shift),
                        .exponent = @as(Normalized.Exponent, comptime BiasedExponent.min_normal.unbias()) - shift,
                    } };
                },
                else => if (repr.mantissa <= std.math.maxInt(Normalized.Fraction)) .{ .normalized = .{
                    .fraction = @intCast(repr.mantissa),
                    .exponent = repr.exponent.unbias(),
                } } else .invalid,
                .infinite => switch (repr.mantissa) {
                    0 => .infinity,
                    else => .nan,
                },
            };
        }
    };
}

/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
inline fn mantissaOne(comptime T: type) comptime_int {
    return if (@typeInfo(T).float.bits == 80) 1 << floatFractionalBits(T) else 0;
}

/// Creates floating point type T from an unbiased exponent and raw mantissa.
inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T {
    const TBits = @Type(.{ .int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } });
    const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
    return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa)));
}

/// Returns the number of bits in the exponent of floating point type T.
pub inline fn floatExponentBits(comptime T: type) comptime_int {
    comptime assert(@typeInfo(T) == .float);

    return switch (@typeInfo(T).float.bits) {
        16 => 5,
        32 => 8,
        64 => 11,
        80 => 15,
        128 => 15,
        else => @compileError("unknown floating point type " ++ @typeName(T)),
    };
}

/// Returns the number of bits in the mantissa of floating point type T.
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
    comptime assert(@typeInfo(T) == .float);

    return switch (@typeInfo(T).float.bits) {
        16 => 10,
        32 => 23,
        64 => 52,
        80 => 64,
        128 => 112,
        else => @compileError("unknown floating point type " ++ @typeName(T)),
    };
}

/// Returns the number of fractional bits in the mantissa of floating point type T.
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
    comptime assert(@typeInfo(T) == .float);

    // standard IEEE floats have an implicit 0.m or 1.m integer part
    // f80 is special and has an explicitly stored bit in the MSB
    // this function corresponds to `MANT_DIG - 1' from C
    return switch (@typeInfo(T).float.bits) {
        16 => 10,
        32 => 23,
        64 => 52,
        80 => 63,
        128 => 112,
        else => @compileError("unknown floating point type " ++ @typeName(T)),
    };
}

/// Returns the minimum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMin(comptime T: type) comptime_int {
    return -floatExponentMax(T) + 1;
}

/// Returns the maximum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMax(comptime T: type) comptime_int {
    return (1 << (floatExponentBits(T) - 1)) - 1;
}

/// Returns the smallest subnormal number representable in floating point type T.
pub inline fn floatTrueMin(comptime T: type) T {
    return reconstructFloat(T, floatExponentMin(T) - 1, 1);
}

/// Returns the smallest normal number representable in floating point type T.
pub inline fn floatMin(comptime T: type) T {
    return reconstructFloat(T, floatExponentMin(T), mantissaOne(T));
}

/// Returns the largest normal number representable in floating point type T.
pub inline fn floatMax(comptime T: type) T {
    const all1s_mantissa = (1 << floatMantissaBits(T)) - 1;
    return reconstructFloat(T, floatExponentMax(T), all1s_mantissa);
}

/// Returns the machine epsilon of floating point type T.
pub inline fn floatEps(comptime T: type) T {
    return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T));
}

/// Returns the local epsilon of floating point type T.
pub inline fn floatEpsAt(comptime T: type, x: T) T {
    switch (@typeInfo(T)) {
        .float => |F| {
            const U: type = @Type(.{ .int = .{ .signedness = .unsigned, .bits = F.bits } });
            const u: U = @bitCast(x);
            const y: T = @bitCast(u ^ 1);
            return @abs(x - y);
        },
        else => @compileError("floatEpsAt only supports floats"),
    }
}

/// Returns the inf value for a floating point `Type`.
pub inline fn inf(comptime Type: type) Type {
    const RuntimeType = switch (Type) {
        else => Type,
        comptime_float => f128, // any float type will do
    };
    return reconstructFloat(RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType));
}

/// Returns the canonical quiet NaN representation for a floating point `Type`.
pub inline fn nan(comptime Type: type) Type {
    const RuntimeType = switch (Type) {
        else => Type,
        comptime_float => f128, // any float type will do
    };
    return reconstructFloat(
        RuntimeType,
        floatExponentMax(RuntimeType) + 1,
        mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 1),
    );
}

/// Returns a signalling NaN representation for a floating point `Type`.
///
/// TODO: LLVM is known to miscompile on some architectures to quiet NaN -
///       this is tracked by https://github.com/ziglang/zig/issues/14366
pub inline fn snan(comptime Type: type) Type {
    const RuntimeType = switch (Type) {
        else => Type,
        comptime_float => f128, // any float type will do
    };
    return reconstructFloat(
        RuntimeType,
        floatExponentMax(RuntimeType) + 1,
        mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 2),
    );
}

fn floatBits(comptime Type: type) !void {
    // (1 +) for the sign bit, since it is separate from the other bits
    const size = 1 + floatExponentBits(Type) + floatMantissaBits(Type);
    try expect(@bitSizeOf(Type) == size);
    try expect(floatFractionalBits(Type) <= floatMantissaBits(Type));

    // for machine epsilon, assert expmin <= -prec <= expmax
    try expect(floatExponentMin(Type) <= -floatFractionalBits(Type));
    try expect(-floatFractionalBits(Type) <= floatExponentMax(Type));
}
test floatBits {
    try floatBits(f16);
    try floatBits(f32);
    try floatBits(f64);
    try floatBits(f80);
    try floatBits(f128);
    try floatBits(c_longdouble);
}

test inf {
    const inf_u16: u16 = 0x7C00;
    const inf_u32: u32 = 0x7F800000;
    const inf_u64: u64 = 0x7FF0000000000000;
    const inf_u80: u80 = 0x7FFF8000000000000000;
    const inf_u128: u128 = 0x7FFF0000000000000000000000000000;
    try expectEqual(inf_u16, @as(u16, @bitCast(inf(f16))));
    try expectEqual(inf_u32, @as(u32, @bitCast(inf(f32))));
    try expectEqual(inf_u64, @as(u64, @bitCast(inf(f64))));
    try expectEqual(inf_u80, @as(u80, @bitCast(inf(f80))));
    try expectEqual(inf_u128, @as(u128, @bitCast(inf(f128))));
}

test nan {
    const qnan_u16: u16 = 0x7E00;
    const qnan_u32: u32 = 0x7FC00000;
    const qnan_u64: u64 = 0x7FF8000000000000;
    const qnan_u80: u80 = 0x7FFFC000000000000000;
    const qnan_u128: u128 = 0x7FFF8000000000000000000000000000;
    try expectEqual(qnan_u16, @as(u16, @bitCast(nan(f16))));
    try expectEqual(qnan_u32, @as(u32, @bitCast(nan(f32))));
    try expectEqual(qnan_u64, @as(u64, @bitCast(nan(f64))));
    try expectEqual(qnan_u80, @as(u80, @bitCast(nan(f80))));
    try expectEqual(qnan_u128, @as(u128, @bitCast(nan(f128))));
}

test snan {
    const snan_u16: u16 = 0x7D00;
    const snan_u32: u32 = 0x7FA00000;
    const snan_u64: u64 = 0x7FF4000000000000;
    const snan_u80: u80 = 0x7FFFA000000000000000;
    const snan_u128: u128 = 0x7FFF4000000000000000000000000000;
    try expectEqual(snan_u16, @as(u16, @bitCast(snan(f16))));
    try expectEqual(snan_u32, @as(u32, @bitCast(snan(f32))));
    try expectEqual(snan_u64, @as(u64, @bitCast(snan(f64))));
    try expectEqual(snan_u80, @as(u80, @bitCast(snan(f80))));
    try expectEqual(snan_u128, @as(u128, @bitCast(snan(f128))));
}