1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrtf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csqrt.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the square root of z. The real and imaginary parts of the result have the same sign
/// as the imaginary part of z.
pub fn sqrt(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => sqrt32(z),
f64 => sqrt64(z),
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
};
}
fn sqrt32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
if (x == 0 and y == 0) {
return Complex(f32).init(0, y);
}
if (math.isInf(y)) {
return Complex(f32).init(math.inf(f32), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f32).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f32).init(@fabs(x - y), math.copysign(x, y));
} else {
return Complex(f32).init(x, math.copysign(y - y, y));
}
}
// y = nan special case is handled fine below
// double-precision avoids overflow with correct rounding.
const dx = @as(f64, x);
const dy = @as(f64, y);
if (dx >= 0) {
const t = @sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@as(f32, @floatCast(t)),
@as(f32, @floatCast(dy / (2.0 * t))),
);
} else {
const t = @sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@as(f32, @floatCast(@fabs(y) / (2.0 * t))),
@as(f32, @floatCast(math.copysign(t, y))),
);
}
}
fn sqrt64(z: Complex(f64)) Complex(f64) {
// may encounter overflow for im,re >= DBL_MAX / (1 + sqrt(2))
const threshold = 0x1.a827999fcef32p+1022;
var x = z.re;
var y = z.im;
if (x == 0 and y == 0) {
return Complex(f64).init(0, y);
}
if (math.isInf(y)) {
return Complex(f64).init(math.inf(f64), y);
}
if (math.isNan(x)) {
// raise invalid if y is not nan
const t = (y - y) / (y - y);
return Complex(f64).init(x, t);
}
if (math.isInf(x)) {
// sqrt(inf + i nan) = inf + nan i
// sqrt(inf + iy) = inf + i0
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f64).init(@fabs(x - y), math.copysign(x, y));
} else {
return Complex(f64).init(x, math.copysign(y - y, y));
}
}
// y = nan special case is handled fine below
// scale to avoid overflow
var scale = false;
if (@fabs(x) >= threshold or @fabs(y) >= threshold) {
x *= 0.25;
y *= 0.25;
scale = true;
}
var result: Complex(f64) = undefined;
if (x >= 0) {
const t = @sqrt((x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(t, y / (2.0 * t));
} else {
const t = @sqrt((-x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(@fabs(y) / (2.0 * t), math.copysign(t, y));
}
if (scale) {
result.re *= 2;
result.im *= 2;
}
return result;
}
const epsilon = 0.0001;
test "complex.csqrt32" {
const a = Complex(f32).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f32, c.re, 2.327117, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 0.644574, epsilon));
}
test "complex.csqrt64" {
const a = Complex(f64).init(5, 3);
const c = sqrt(a);
try testing.expect(math.approxEqAbs(f64, c.re, 2.3271175190399496, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 0.6445742373246469, epsilon));
}
|