1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexpf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexp.c
const builtin = @import("builtin");
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns e raised to the power of z (e^z).
pub fn exp(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => exp32(z),
f64 => exp64(z),
else => @compileError("exp not implemented for " ++ @typeName(z)),
};
}
fn exp32(z: Complex(f32)) Complex(f32) {
const exp_overflow = 0x42b17218; // max_exp * ln2 ~= 88.72283955
const cexp_overflow = 0x43400074; // (max_exp - min_denom_exp) * ln2
const x = z.re;
const y = z.im;
const hy = @bitCast(u32, y) & 0x7fffffff;
// cexp(x + i0) = exp(x) + i0
if (hy == 0) {
return Complex(f32).new(math.exp(x), y);
}
const hx = @bitCast(u32, x);
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) == 0) {
return Complex(f32).new(math.cos(y), math.sin(y));
}
if (hy >= 0x7f800000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if ((hx & 0x7fffffff) != 0x7f800000) {
return Complex(f32).new(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f32).new(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f32).new(x, y - y);
}
}
// 88.7 <= x <= 192 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
return Complex(f32).new(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
fn exp64(z: Complex(f64)) Complex(f64) {
const exp_overflow = 0x40862e42; // high bits of max_exp * ln2 ~= 710
const cexp_overflow = 0x4096b8e4; // (max_exp - min_denorm_exp) * ln2
const x = z.re;
const y = z.im;
const fy = @bitCast(u64, y);
const hy = @intCast(u32, (fy >> 32) & 0x7fffffff);
const ly = @truncate(u32, fy);
// cexp(x + i0) = exp(x) + i0
if (hy | ly == 0) {
return Complex(f64).new(math.exp(x), y);
}
const fx = @bitCast(u64, x);
const hx = @intCast(u32, fx >> 32);
const lx = @truncate(u32, fx);
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) | lx == 0) {
return Complex(f64).new(math.cos(y), math.sin(y));
}
if (hy >= 0x7ff00000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
return Complex(f64).new(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f64).new(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f64).new(x, y - y);
}
}
// 709.7 <= x <= 1454.3 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
return Complex(f64).new(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
const epsilon = 0.0001;
test "complex.cexp32" {
const a = Complex(f32).new(5, 3);
const c = exp(a);
testing.expect(math.approxEqAbs(f32, c.re, -146.927917, epsilon));
testing.expect(math.approxEqAbs(f32, c.im, 20.944065, epsilon));
}
test "complex.cexp64" {
const a = Complex(f64).new(5, 3);
const c = exp(a);
testing.expect(math.approxEqAbs(f64, c.re, -146.927917, epsilon));
testing.expect(math.approxEqAbs(f64, c.im, 20.944065, epsilon));
}
|