1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ccoshf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ccosh.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns the hyperbolic arc-cosine of z.
pub fn cosh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => cosh32(z),
f64 => cosh64(z),
else => @compileError("cosh not implemented for " ++ @typeName(z)),
};
}
fn cosh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx: u32 = @bitCast(x);
const ix = hx & 0x7fffffff;
const hy: u32 = @bitCast(y);
const iy = hy & 0x7fffffff;
if (ix < 0x7f800000 and iy < 0x7f800000) {
if (iy == 0) {
return Complex(f32).init(math.cosh(x), y);
}
// small x: normal case
if (ix < 0x41100000) {
return Complex(f32).init(math.cosh(x) * @cos(y), math.sinh(x) * @sin(y));
}
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re, r.im * math.copysign(@as(f32, 1.0), x));
}
// x >= 192.7: result always overflows
else {
const h = 0x1p127 * x;
return Complex(f32).init(h * h * @cos(y), h * @sin(y));
}
}
if (ix == 0 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, math.copysign(@as(f32, 0.0), x * (y - y)));
}
if (iy == 0 and ix >= 0x7f800000) {
if (hx & 0x7fffff == 0) {
return Complex(f32).init(x * x, math.copysign(@as(f32, 0.0), x) * y);
}
return Complex(f32).init(x, math.copysign(@as(f32, 0.0), (x + x) * y));
}
if (ix < 0x7f800000 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, x * (y - y));
}
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
if (iy >= 0x7f800000) {
return Complex(f32).init(x * x, x * (y - y));
}
return Complex(f32).init((x * x) * @cos(y), x * @sin(y));
}
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
}
fn cosh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx: u64 = @bitCast(x);
const hx: u32 = @intCast(fx >> 32);
const lx: u32 = @truncate(fx);
const ix = hx & 0x7fffffff;
const fy: u64 = @bitCast(y);
const hy: u32 = @intCast(fy >> 32);
const ly: u32 = @truncate(fy);
const iy = hy & 0x7fffffff;
// nearly non-exceptional case where x, y are finite
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
if (iy | ly == 0) {
return Complex(f64).init(math.cosh(x), x * y);
}
// small x: normal case
if (ix < 0x40360000) {
return Complex(f64).init(math.cosh(x) * @cos(y), math.sinh(x) * @sin(y));
}
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f64).init(h * @cos(y), math.copysign(h, x) * @sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re, r.im * math.copysign(@as(f64, 1.0), x));
}
// x >= 1455: result always overflows
else {
const h = 0x1p1023;
return Complex(f64).init(h * h * @cos(y), h * @sin(y));
}
}
if (ix | lx == 0 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, math.copysign(@as(f64, 0.0), x * (y - y)));
}
if (iy | ly == 0 and ix >= 0x7ff00000) {
if ((hx & 0xfffff) | lx == 0) {
return Complex(f64).init(x * x, math.copysign(@as(f64, 0.0), x) * y);
}
return Complex(f64).init(x * x, math.copysign(@as(f64, 0.0), (x + x) * y));
}
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, x * (y - y));
}
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
if (iy >= 0x7ff00000) {
return Complex(f64).init(x * x, x * (y - y));
}
return Complex(f64).init(x * x * @cos(y), x * @sin(y));
}
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
}
const epsilon = 0.0001;
test "complex.ccosh32" {
const a = Complex(f32).init(5, 3);
const c = cosh(a);
try testing.expect(math.approxEqAbs(f32, c.re, -73.467300, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, 10.471557, epsilon));
}
test "complex.ccosh64" {
const a = Complex(f64).init(5, 3);
const c = cosh(a);
try testing.expect(math.approxEqAbs(f64, c.re, -73.467300, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, 10.471557, epsilon));
}
|