aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/cbrt.zig
blob: 5241e31323ea4e3b14e9d55e9392897b5dafffc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrtf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrt.c

const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;

/// Returns the cube root of x.
///
/// Special Cases:
///  - cbrt(+-0)   = +-0
///  - cbrt(+-inf) = +-inf
///  - cbrt(nan)   = nan
pub fn cbrt(x: var) @typeOf(x) {
    const T = @typeOf(x);
    return switch (T) {
        f32 => cbrt32(x),
        f64 => cbrt64(x),
        else => @compileError("cbrt not implemented for " ++ @typeName(T)),
    };
}

fn cbrt32(x: f32) f32 {
    const B1: u32 = 709958130; // (127 - 127.0 / 3 - 0.03306235651) * 2^23
    const B2: u32 = 642849266; // (127 - 127.0 / 3 - 24 / 3 - 0.03306235651) * 2^23

    var u = @bitCast(u32, x);
    var hx = u & 0x7FFFFFFF;

    // cbrt(nan, inf) = itself
    if (hx >= 0x7F800000) {
        return x + x;
    }

    // cbrt to ~5bits
    if (hx < 0x00800000) {
        // cbrt(+-0) = itself
        if (hx == 0) {
            return x;
        }
        u = @bitCast(u32, x * 0x1.0p24);
        hx = u & 0x7FFFFFFF;
        hx = hx / 3 + B2;
    } else {
        hx = hx / 3 + B1;
    }

    u &= 0x80000000;
    u |= hx;

    // first step newton to 16 bits
    var t: f64 = @bitCast(f32, u);
    var r: f64 = t * t * t;
    t = t * (f64(x) + x + r) / (x + r + r);

    // second step newton to 47 bits
    r = t * t * t;
    t = t * (f64(x) + x + r) / (x + r + r);

    return @floatCast(f32, t);
}

fn cbrt64(x: f64) f64 {
    const B1: u32 = 715094163; // (1023 - 1023 / 3 - 0.03306235651 * 2^20
    const B2: u32 = 696219795; // (1023 - 1023 / 3 - 54 / 3 - 0.03306235651 * 2^20

    // |1 / cbrt(x) - p(x)| < 2^(23.5)
    const P0: f64 = 1.87595182427177009643;
    const P1: f64 = -1.88497979543377169875;
    const P2: f64 = 1.621429720105354466140;
    const P3: f64 = -0.758397934778766047437;
    const P4: f64 = 0.145996192886612446982;

    var u = @bitCast(u64, x);
    var hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;

    // cbrt(nan, inf) = itself
    if (hx >= 0x7FF00000) {
        return x + x;
    }

    // cbrt to ~5bits
    if (hx < 0x00100000) {
        u = @bitCast(u64, x * 0x1.0p54);
        hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;

        // cbrt(0) is itself
        if (hx == 0) {
            return 0;
        }
        hx = hx / 3 + B2;
    } else {
        hx = hx / 3 + B1;
    }

    u &= 1 << 63;
    u |= u64(hx) << 32;
    var t = @bitCast(f64, u);

    // cbrt to 23 bits
    // cbrt(x) = t * cbrt(x / t^3) ~= t * P(t^3 / x)
    var r = (t * t) * (t / x);
    t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));

    // Round t away from 0 to 23 bits
    u = @bitCast(u64, t);
    u = (u + 0x80000000) & 0xFFFFFFFFC0000000;
    t = @bitCast(f64, u);

    // one step newton to 53 bits
    const s = t * t;
    var q = x / s;
    var w = t + t;
    q = (q - t) / (w + q);

    return t + t * q;
}

test "math.cbrt" {
    expect(cbrt(f32(0.0)) == cbrt32(0.0));
    expect(cbrt(f64(0.0)) == cbrt64(0.0));
}

test "math.cbrt32" {
    const epsilon = 0.000001;

    expect(cbrt32(0.0) == 0.0);
    expect(math.approxEq(f32, cbrt32(0.2), 0.584804, epsilon));
    expect(math.approxEq(f32, cbrt32(0.8923), 0.962728, epsilon));
    expect(math.approxEq(f32, cbrt32(1.5), 1.144714, epsilon));
    expect(math.approxEq(f32, cbrt32(37.45), 3.345676, epsilon));
    expect(math.approxEq(f32, cbrt32(123123.234375), 49.748501, epsilon));
}

test "math.cbrt64" {
    const epsilon = 0.000001;

    expect(cbrt64(0.0) == 0.0);
    expect(math.approxEq(f64, cbrt64(0.2), 0.584804, epsilon));
    expect(math.approxEq(f64, cbrt64(0.8923), 0.962728, epsilon));
    expect(math.approxEq(f64, cbrt64(1.5), 1.144714, epsilon));
    expect(math.approxEq(f64, cbrt64(37.45), 3.345676, epsilon));
    expect(math.approxEq(f64, cbrt64(123123.234375), 49.748501, epsilon));
}

test "math.cbrt.special" {
    expect(cbrt32(0.0) == 0.0);
    expect(cbrt32(-0.0) == -0.0);
    expect(math.isPositiveInf(cbrt32(math.inf(f32))));
    expect(math.isNegativeInf(cbrt32(-math.inf(f32))));
    expect(math.isNan(cbrt32(math.nan(f32))));
}

test "math.cbrt64.special" {
    expect(cbrt64(0.0) == 0.0);
    expect(cbrt64(-0.0) == -0.0);
    expect(math.isPositiveInf(cbrt64(math.inf(f64))));
    expect(math.isNegativeInf(cbrt64(-math.inf(f64))));
    expect(math.isNan(cbrt64(math.nan(f64))));
}