1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
|
const std = @import("../../std.zig");
const builtin = @import("builtin");
const math = std.math;
const Limb = std.math.big.Limb;
const limb_bits = @typeInfo(Limb).Int.bits;
const HalfLimb = std.math.big.HalfLimb;
const half_limb_bits = @typeInfo(HalfLimb).Int.bits;
const DoubleLimb = std.math.big.DoubleLimb;
const SignedDoubleLimb = std.math.big.SignedDoubleLimb;
const Log2Limb = std.math.big.Log2Limb;
const Allocator = std.mem.Allocator;
const mem = std.mem;
const maxInt = std.math.maxInt;
const minInt = std.math.minInt;
const assert = std.debug.assert;
const Endian = std.builtin.Endian;
const Signedness = std.builtin.Signedness;
const native_endian = builtin.cpu.arch.endian();
const debug_safety = false;
/// Returns the number of limbs needed to store `scalar`, which must be a
/// primitive integer value.
pub fn calcLimbLen(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const w_value = std.math.absCast(scalar);
return @divFloor(@intCast(Limb, math.log2(w_value)), limb_bits) + 1;
}
pub fn calcToStringLimbsBufferLen(a_len: usize, base: u8) usize {
if (math.isPowerOfTwo(base))
return 0;
return a_len + 2 + a_len + calcDivLimbsBufferLen(a_len, 1);
}
pub fn calcDivLimbsBufferLen(a_len: usize, b_len: usize) usize {
return a_len + b_len + 4;
}
pub fn calcMulLimbsBufferLen(a_len: usize, b_len: usize, aliases: usize) usize {
return aliases * math.max(a_len, b_len);
}
pub fn calcMulWrapLimbsBufferLen(bit_count: usize, a_len: usize, b_len: usize, aliases: usize) usize {
const req_limbs = calcTwosCompLimbCount(bit_count);
return aliases * math.min(req_limbs, math.max(a_len, b_len));
}
pub fn calcSetStringLimbsBufferLen(base: u8, string_len: usize) usize {
const limb_count = calcSetStringLimbCount(base, string_len);
return calcMulLimbsBufferLen(limb_count, limb_count, 2);
}
pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize {
return (string_len + (limb_bits / base - 1)) / (limb_bits / base);
}
pub fn calcPowLimbsBufferLen(a_bit_count: usize, y: usize) usize {
// The 2 accounts for the minimum space requirement for llmulacc
return 2 + (a_bit_count * y + (limb_bits - 1)) / limb_bits;
}
// Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
pub fn calcTwosCompLimbCount(bit_count: usize) usize {
return std.math.divCeil(usize, bit_count, @bitSizeOf(Limb)) catch unreachable;
}
/// a + b * c + *carry, sets carry to the overflow bits
pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
@setRuntimeSafety(debug_safety);
var r1: Limb = undefined;
// r1 = a + *carry
const c1: Limb = @boolToInt(@addWithOverflow(Limb, a, carry.*, &r1));
// r2 = b * c
const bc = @as(DoubleLimb, math.mulWide(Limb, b, c));
const r2 = @truncate(Limb, bc);
const c2 = @truncate(Limb, bc >> limb_bits);
// r1 = r1 + r2
const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1));
// This never overflows, c1, c3 are either 0 or 1 and if both are 1 then
// c2 is at least <= maxInt(Limb) - 2.
carry.* = c1 + c2 + c3;
return r1;
}
/// a - b * c - *carry, sets carry to the overflow bits
fn subMulLimbWithBorrow(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
// r1 = a - *carry
var r1: Limb = undefined;
const c1: Limb = @boolToInt(@subWithOverflow(Limb, a, carry.*, &r1));
// r2 = b * c
const bc = @as(DoubleLimb, std.math.mulWide(Limb, b, c));
const r2 = @truncate(Limb, bc);
const c2 = @truncate(Limb, bc >> limb_bits);
// r1 = r1 - r2
const c3: Limb = @boolToInt(@subWithOverflow(Limb, r1, r2, &r1));
carry.* = c1 + c2 + c3;
return r1;
}
/// Used to indicate either limit of a 2s-complement integer.
pub const TwosCompIntLimit = enum {
// The low limit, either 0x00 (unsigned) or (-)0x80 (signed) for an 8-bit integer.
min,
// The high limit, either 0xFF (unsigned) or 0x7F (signed) for an 8-bit integer.
max,
};
/// A arbitrary-precision big integer, with a fixed set of mutable limbs.
pub const Mutable = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
/// These are allocated limbs; the `len` field tells the valid range.
limbs: []Limb,
len: usize,
positive: bool,
pub fn toConst(self: Mutable) Const {
return .{
.limbs = self.limbs[0..self.len],
.positive = self.positive,
};
}
/// Returns true if `a == 0`.
pub fn eqZero(self: Mutable) bool {
return self.toConst().eqZero();
}
/// Asserts that the allocator owns the limbs memory. If this is not the case,
/// use `toConst().toManaged()`.
pub fn toManaged(self: Mutable, allocator: Allocator) Managed {
return .{
.allocator = allocator,
.limbs = self.limbs,
.metadata = if (self.positive)
self.len & ~Managed.sign_bit
else
self.len | Managed.sign_bit,
};
}
/// `value` is a primitive integer type.
/// Asserts the value fits within the provided `limbs_buffer`.
/// Note: `calcLimbLen` can be used to figure out how big an array to allocate for `limbs_buffer`.
pub fn init(limbs_buffer: []Limb, value: anytype) Mutable {
limbs_buffer[0] = 0;
var self: Mutable = .{
.limbs = limbs_buffer,
.len = 1,
.positive = true,
};
self.set(value);
return self;
}
/// Copies the value of a Const to an existing Mutable so that they both have the same value.
/// Asserts the value fits in the limbs buffer.
pub fn copy(self: *Mutable, other: Const) void {
if (self.limbs.ptr != other.limbs.ptr) {
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
}
self.positive = other.positive;
self.len = other.limbs.len;
}
/// Efficiently swap an Mutable with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Mutable, other: *Mutable) void {
mem.swap(Mutable, self, other);
}
pub fn dump(self: Mutable) void {
for (self.limbs[0..self.len]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("capacity={} positive={}\n", .{ self.limbs.len, self.positive });
}
/// Clones an Mutable and returns a new Mutable with the same value. The new Mutable is a deep copy and
/// can be modified separately from the original.
/// Asserts that limbs is big enough to store the value.
pub fn clone(other: Mutable, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, other.limbs[0..other.len]);
return .{
.limbs = limbs,
.len = other.len,
.positive = other.positive,
};
}
pub fn negate(self: *Mutable) void {
self.positive = !self.positive;
}
/// Modify to become the absolute value
pub fn abs(self: *Mutable) void {
self.positive = true;
}
/// Sets the Mutable to value. Value must be an primitive integer type.
/// Asserts the value fits within the limbs buffer.
/// Note: `calcLimbLen` can be used to figure out how big the limbs buffer
/// needs to be to store a specific value.
pub fn set(self: *Mutable, value: anytype) void {
const T = @TypeOf(value);
const needed_limbs = calcLimbLen(value);
assert(needed_limbs <= self.limbs.len); // value too big
self.len = needed_limbs;
self.positive = value >= 0;
switch (@typeInfo(T)) {
.Int => |info| {
var w_value = std.math.absCast(value);
if (info.bits <= limb_bits) {
self.limbs[0] = w_value;
} else {
var i: usize = 0;
while (w_value != 0) : (i += 1) {
self.limbs[i] = @truncate(Limb, w_value);
// TODO: shift == 64 at compile-time fails. Fails on u128 limbs.
w_value >>= limb_bits / 2;
w_value >>= limb_bits / 2;
}
}
},
.ComptimeInt => {
comptime var w_value = std.math.absCast(value);
if (w_value <= maxInt(Limb)) {
self.limbs[0] = w_value;
} else {
const mask = (1 << limb_bits) - 1;
comptime var i = 0;
inline while (w_value != 0) : (i += 1) {
self.limbs[i] = w_value & mask;
w_value >>= limb_bits / 2;
w_value >>= limb_bits / 2;
}
}
},
else => @compileError("cannot set Mutable using type " ++ @typeName(T)),
}
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Asserts there is enough memory for the value in `self.limbs`. An upper bound on number of limbs can
/// be determined with `calcSetStringLimbCount`.
/// Asserts the base is in the range [2, 16].
///
/// Returns an error if the value has invalid digits for the requested base.
///
/// `limbs_buffer` is used for temporary storage. The size required can be found with
/// `calcSetStringLimbsBufferLen`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn setString(
self: *Mutable,
base: u8,
value: []const u8,
limbs_buffer: []Limb,
allocator: ?Allocator,
) error{InvalidCharacter}!void {
assert(base >= 2 and base <= 16);
var i: usize = 0;
var positive = true;
if (value.len > 0 and value[0] == '-') {
positive = false;
i += 1;
}
const ap_base: Const = .{ .limbs = &[_]Limb{base}, .positive = true };
self.set(0);
for (value[i..]) |ch| {
if (ch == '_') {
continue;
}
const d = try std.fmt.charToDigit(ch, base);
const ap_d: Const = .{ .limbs = &[_]Limb{d}, .positive = true };
self.mul(self.toConst(), ap_base, limbs_buffer, allocator);
self.add(self.toConst(), ap_d);
}
self.positive = positive;
}
/// Set self to either bound of a 2s-complement integer.
/// Note: The result is still sign-magnitude, not twos complement! In order to convert the
/// result to twos complement, it is sufficient to take the absolute value.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn setTwosCompIntLimit(
r: *Mutable,
limit: TwosCompIntLimit,
signedness: Signedness,
bit_count: usize,
) void {
// Handle zero-bit types.
if (bit_count == 0) {
r.set(0);
return;
}
const req_limbs = calcTwosCompLimbCount(bit_count);
const bit = @truncate(Log2Limb, bit_count - 1);
const signmask = @as(Limb, 1) << bit; // 0b0..010..0 where 1 is the sign bit.
const mask = (signmask << 1) -% 1; // 0b0..011..1 where the leftmost 1 is the sign bit.
r.positive = true;
switch (signedness) {
.signed => switch (limit) {
.min => {
// Negative bound, signed = -0x80.
r.len = req_limbs;
mem.set(Limb, r.limbs[0 .. r.len - 1], 0);
r.limbs[r.len - 1] = signmask;
r.positive = false;
},
.max => {
// Positive bound, signed = 0x7F
// Note, in this branch we need to normalize because the first bit is
// supposed to be 0.
// Special case for 1-bit integers.
if (bit_count == 1) {
r.set(0);
} else {
const new_req_limbs = calcTwosCompLimbCount(bit_count - 1);
const msb = @truncate(Log2Limb, bit_count - 2);
const new_signmask = @as(Limb, 1) << msb; // 0b0..010..0 where 1 is the sign bit.
const new_mask = (new_signmask << 1) -% 1; // 0b0..001..1 where the rightmost 0 is the sign bit.
r.len = new_req_limbs;
std.mem.set(Limb, r.limbs[0 .. r.len - 1], maxInt(Limb));
r.limbs[r.len - 1] = new_mask;
}
},
},
.unsigned => switch (limit) {
.min => {
// Min bound, unsigned = 0x00
r.set(0);
},
.max => {
// Max bound, unsigned = 0xFF
r.len = req_limbs;
std.mem.set(Limb, r.limbs[0 .. r.len - 1], maxInt(Limb));
r.limbs[r.len - 1] = mask;
},
},
}
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, calcLimbLen(scalar)) + 1`.
pub fn addScalar(r: *Mutable, a: Const, scalar: anytype) void {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const operand = init(&limbs, scalar).toConst();
return add(r, a, operand);
}
/// Base implementation for addition. Adds `max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occured.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `max(a.limbs.len, b.limbs.len)`.
fn addCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqZero()) {
r.copy(b);
return false;
} else if (b.eqZero()) {
r.copy(a);
return false;
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
return r.subCarry(a, b.abs());
} else {
// (-a) + (b) => b - a
return r.subCarry(b, a.abs());
}
} else {
r.positive = a.positive;
if (a.limbs.len >= b.limbs.len) {
const c = lladdcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
return c != 0;
} else {
const c = lladdcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
return c != 0;
}
}
}
/// r = a + b
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn add(r: *Mutable, a: Const, b: Const) void {
if (r.addCarry(a, b)) {
// Fix up the result. Note that addCarry normalizes by a.limbs.len or b.limbs.len,
// so we need to set the length here.
const msl = math.max(a.limbs.len, b.limbs.len);
// `[add|sub]Carry` normalizes by `msl`, so we need to fix up the result manually here.
// Note, the fact that it normalized means that the intermediary limbs are zero here.
r.len = msl + 1;
r.limbs[msl] = 1; // If this panics, there wasn't enough space in `r`.
}
}
/// r = a + b with 2s-complement wrapping semantics. Returns whether overflow occurred.
/// r, a and b may be aliases
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn addWrap(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) bool {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occured.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)],
};
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)],
};
var carry_truncated = false;
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs. In this case, the carry is ignored, as it would be removed by
// truncate anyway.
// - a and b had less elements than req_limbs, and those were overflowed. This case needs to be handled.
// Note: after this we still might need to wrap.
const msl = math.max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
} else {
carry_truncated = true;
}
}
if (!r.toConst().fitsInTwosComp(signedness, bit_count)) {
r.truncate(r.toConst(), signedness, bit_count);
return true;
}
return carry_truncated;
}
/// r = a + b with 2s-complement saturating semantics.
/// r, a and b may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn addSat(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occured.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)],
};
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)],
};
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs, in which case we need to saturate.
// - a and b had less elements than req_limbs, and those were overflowed.
// Note: In this case, might _also_ need to saturate.
const msl = math.max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
// Note: Saturation may still be required if msl == req_limbs - 1
} else {
// Overflowed req_limbs, definitely saturate.
r.setTwosCompIntLimit(if (r.positive) .max else .min, signedness, bit_count);
}
}
// Saturate if the result didn't fit.
r.saturate(r.toConst(), signedness, bit_count);
}
/// Base implementation for subtraction. Subtracts `max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occured.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `max(a.limbs.len, b.limbs.len)`.
fn subCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqZero()) {
r.copy(b);
r.positive = !b.positive;
return false;
} else if (b.eqZero()) {
r.copy(a);
return false;
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
return r.addCarry(a, b.abs());
} else {
// (-a) - (b) => -a + -b
return r.addCarry(a, b.negate());
}
} else if (a.positive) {
if (a.order(b) != .lt) {
// (a) - (b) => a - b
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = true;
return c != 0;
} else {
// (a) - (b) => -b + a => -(b - a)
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = false;
return c != 0;
}
} else {
if (a.order(b) == .lt) {
// (-a) - (-b) => -(a - b)
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = false;
return c != 0;
} else {
// (-a) - (-b) => --b + -a => b - a
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = true;
return c != 0;
}
}
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`. The +1 is not needed if both operands are positive.
pub fn sub(r: *Mutable, a: Const, b: Const) void {
r.add(a, b.negate());
}
/// r = a - b with 2s-complement wrapping semantics. Returns whether any overflow occured.
///
/// r, a and b may be aliases
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn subWrap(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) bool {
return r.addWrap(a, b.negate(), signedness, bit_count);
}
/// r = a - b with 2s-complement saturating semantics.
/// r, a and b may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn subSat(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) void {
r.addSat(a, b.negate(), signedness, bit_count);
}
/// rma = a * b
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulLimbsBufferLen`.
pub fn mul(rma: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?Allocator) void {
var buf_index: usize = 0;
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], a.limbs);
buf_index += a.limbs.len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
mem.copy(Limb, limbs_buffer[buf_index..], b.limbs);
buf_index += b.limbs.len;
break :blk b.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulNoAlias(a_copy, b_copy, allocator);
}
/// rma = a * b
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulNoAlias(rma: *Mutable, a: Const, b: Const, allocator: ?Allocator) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
if (a.limbs.len == 1 and b.limbs.len == 1) {
if (!@mulWithOverflow(Limb, a.limbs[0], b.limbs[0], &rma.limbs[0])) {
rma.len = 1;
rma.positive = (a.positive == b.positive);
return;
}
}
mem.set(Limb, rma.limbs[0 .. a.limbs.len + b.limbs.len], 0);
llmulacc(.add, allocator, rma.limbs, a.limbs, b.limbs);
rma.normalize(a.limbs.len + b.limbs.len);
rma.positive = (a.positive == b.positive);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulWrapLimbsBufferLen`.
pub fn mulWrap(
rma: *Mutable,
a: Const,
b: Const,
signedness: Signedness,
bit_count: usize,
limbs_buffer: []Limb,
allocator: ?Allocator,
) void {
var buf_index: usize = 0;
const req_limbs = calcTwosCompLimbCount(bit_count);
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
const a_len = math.min(req_limbs, a.limbs.len);
mem.copy(Limb, limbs_buffer[buf_index..], a.limbs[0..a_len]);
buf_index += a_len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
const b_len = math.min(req_limbs, b.limbs.len);
mem.copy(Limb, limbs_buffer[buf_index..], b.limbs[0..b_len]);
buf_index += b_len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulWrapNoAlias(a_copy, b_copy, signedness, bit_count, allocator);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulWrapNoAlias(
rma: *Mutable,
a: Const,
b: Const,
signedness: Signedness,
bit_count: usize,
allocator: ?Allocator,
) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
const req_limbs = calcTwosCompLimbCount(bit_count);
// We can ignore the upper bits here, those results will be discarded anyway.
const a_limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)];
const b_limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)];
mem.set(Limb, rma.limbs[0..req_limbs], 0);
llmulacc(.add, allocator, rma.limbs, a_limbs, b_limbs);
rma.normalize(math.min(req_limbs, a.limbs.len + b.limbs.len));
rma.positive = (a.positive == b.positive);
rma.truncate(rma.toConst(), signedness, bit_count);
}
/// r = @bitReverse(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Asserts the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn bitReverse(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
if (bit_count == 0) return;
r.copy(a);
const limbs_required = calcTwosCompLimbCount(bit_count);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
} else if (limbs_required > a.limbs.len) {
// Zero-extend to our output length
for (r.limbs[a.limbs.len..limbs_required]) |*limb| {
limb.* = 0;
}
r.len = limbs_required;
}
// 0b0..01..1000 with @log2(@sizeOf(Limb)) consecutive ones
const endian_mask: usize = (@sizeOf(Limb) - 1) << 3;
var bytes = std.mem.sliceAsBytes(r.limbs);
var bits = std.packed_int_array.PackedIntSliceEndian(u1, .Little).init(bytes, limbs_required * @bitSizeOf(Limb));
var k: usize = 0;
while (k < ((bit_count + 1) / 2)) : (k += 1) {
var i = k;
var rev_i = bit_count - i - 1;
// This "endian mask" remaps a low (LE) byte to the corresponding high
// (BE) byte in the Limb, without changing which limbs we are indexing
if (native_endian == .Big) {
i ^= endian_mask;
rev_i ^= endian_mask;
}
const bit_i = bits.get(i);
const bit_rev_i = bits.get(rev_i);
bits.set(i, bit_rev_i);
bits.set(rev_i, bit_i);
}
// Calculate signed-magnitude representation for output
if (signedness == .signed) {
const last_bit = switch (native_endian) {
.Little => bits.get(bit_count - 1),
.Big => bits.get((bit_count - 1) ^ endian_mask),
};
if (last_bit == 1) {
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
r.positive = false; // Negate.
}
}
r.normalize(r.len);
}
/// r = @byteSwap(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Asserts the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(8*byte_count)`.
pub fn byteSwap(r: *Mutable, a: Const, signedness: Signedness, byte_count: usize) void {
if (byte_count == 0) return;
r.copy(a);
const limbs_required = calcTwosCompLimbCount(8 * byte_count);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
} else if (limbs_required > a.limbs.len) {
// Zero-extend to our output length
for (r.limbs[a.limbs.len..limbs_required]) |*limb| {
limb.* = 0;
}
r.len = limbs_required;
}
// 0b0..01..1 with @log2(@sizeOf(Limb)) trailing ones
const endian_mask: usize = @sizeOf(Limb) - 1;
var bytes = std.mem.sliceAsBytes(r.limbs);
assert(bytes.len >= byte_count);
var k: usize = 0;
while (k < (byte_count + 1) / 2) : (k += 1) {
var i = k;
var rev_i = byte_count - k - 1;
// This "endian mask" remaps a low (LE) byte to the corresponding high
// (BE) byte in the Limb, without changing which limbs we are indexing
if (native_endian == .Big) {
i ^= endian_mask;
rev_i ^= endian_mask;
}
const byte_i = bytes[i];
const byte_rev_i = bytes[rev_i];
bytes[rev_i] = byte_i;
bytes[i] = byte_rev_i;
}
// Calculate signed-magnitude representation for output
if (signedness == .signed) {
const last_byte = switch (native_endian) {
.Little => bytes[byte_count - 1],
.Big => bytes[(byte_count - 1) ^ endian_mask],
};
if (last_byte & (1 << 7) != 0) { // Check sign bit of last byte
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
r.positive = false; // Negate.
}
}
r.normalize(r.len);
}
/// r = @popCount(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn popCount(r: *Mutable, a: Const, bit_count: usize) void {
r.copy(a);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
}
var sum: Limb = 0;
for (r.limbs[0..r.len]) |limb| {
sum += @popCount(limb);
}
r.set(sum);
}
/// rma = a * a
///
/// `rma` may not alias with `a`.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `2 * a.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn sqrNoAlias(rma: *Mutable, a: Const, opt_allocator: ?Allocator) void {
_ = opt_allocator;
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
mem.set(Limb, rma.limbs, 0);
llsquareBasecase(rma.limbs, a.limbs);
rma.normalize(2 * a.limbs.len + 1);
rma.positive = true;
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divFloor(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
) void {
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
div(q, r, &x, &y);
// Note, `div` performs truncating division, which satisfies
// @divTrunc(a, b) * b + @rem(a, b) = a
// so r = a - @divTrunc(a, b) * b
// Note, @rem(a, -b) = @rem(-b, a) = -@rem(a, b) = -@rem(-a, -b)
// For divTrunc, we want to perform
// @divFloor(a, b) * b + @mod(a, b) = a
// Note:
// @divFloor(-a, b)
// = @divFloor(a, -b)
// = -@divCeil(a, b)
// = -@divFloor(a + b - 1, b)
// = -@divTrunc(a + b - 1, b)
// Note (1):
// @divTrunc(a + b - 1, b) * b + @rem(a + b - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = a
if (a.positive and b.positive) {
// Positive-positive case, don't need to do anything.
} else if (a.positive and !b.positive) {
// a/-b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// If b divides a exactly, we have @divFloor(a, -b) * -b = a
// Else, we have @divFloor(a, -b) * -b > a, so @mod(a, -b) becomes negative
// We have:
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// = -@divTrunc(a + b - 1, b) * -b + @mod(a, -b) = a
// = @divTrunc(a + b - 1, b) * b + @mod(a, -b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b + @mod(a, -b)
// Yields:
// @mod(a, -b) = @rem(a - 1, b) - b + 1
// Note that `r` holds @rem(a, b) at this point.
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(a, -b) = @rem(a, b) - 1 - b + 1 = @rem(a, b) - b
// Else:
// @rem(a - 1, b) = @rem(a + b - 1, b) = @rem(b - 1, b) = b - 1
// => @mod(a, -b) = b - 1 - b + 1 = 0
if (!r.eqZero()) {
q.addScalar(q.toConst(), -1);
r.positive = true;
r.sub(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and b.positive) {
// -a/b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(-a, b) * b + @mod(-a, b) = a
// If b divides a exactly, we have @divFloor(-a, b) * b = -a
// Else, we have @divFloor(-a, b) * b < -a, so @mod(-a, b) becomes positive
// We have:
// @divFloor(-a, b) * b + @mod(-a, b) = -a
// = -@divTrunc(a + b - 1, b) * b + @mod(-a, b) = -a
// = @divTrunc(a + b - 1, b) * b - @mod(-a, b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b - @mod(-a, b)
// Yields:
// @rem(a - 1, b) - b + 1 = -@mod(-a, b)
// => -@mod(-a, b) = @rem(a - 1, b) - b + 1
// => @mod(-a, b) = -(@rem(a - 1, b) - b + 1) = -@rem(a - 1, b) + b - 1
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(-a, b) = -(@rem(a, b) - 1) + b - 1 = -@rem(a, b) + 1 + b - 1 = -@rem(a, b) + b
// Else :
// @rem(a - 1, b) = b - 1
// => @mod(-a, b) = -(b - 1) + b - 1 = 0
if (!r.eqZero()) {
q.addScalar(q.toConst(), -1);
r.positive = false;
r.add(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and !b.positive) {
// a/b -> q is positive, don't need to do anything to fix flooring.
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// If b divides a exactly, we have @divFloor(-a, -b) * -b = -a
// Else, we have @divFloor(-a, -b) * -b > -a, so @mod(-a, -b) becomes negative
// We have:
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * b - @mod(-a, -b) = a
// We also have:
// @divTrunc(a, b) * b + @rem(a, b) = a
// Substitute a:
// @divTrunc(a, b) * b + @rem(a, b) = @divTrunc(a, b) * b - @mod(-a, -b)
// => @rem(a, b) = -@mod(-a, -b)
// => @mod(-a, -b) = -@rem(a, b)
r.positive = false;
}
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divTrunc(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
) void {
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
div(q, r, &x, &y);
}
/// r = a << shift, in other words, r = a * 2^shift
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void {
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / limb_bits) + 1);
r.positive = a.positive;
}
/// r = a <<| shift with 2s-complement saturating semantics.
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn shiftLeftSat(r: *Mutable, a: Const, shift: usize, signedness: Signedness, bit_count: usize) void {
// Special case: When the argument is negative, but the result is supposed to be unsigned,
// return 0 in all cases.
if (!a.positive and signedness == .unsigned) {
r.set(0);
return;
}
// Check whether the shift is going to overflow. This is the case
// when (in 2s complement) any bit above `bit_count - shift` is set in the unshifted value.
// Note, the sign bit is not counted here.
// Handle shifts larger than the target type. This also deals with
// 0-bit integers.
if (bit_count <= shift) {
// In this case, there is only no overflow if `a` is zero.
if (a.eqZero()) {
r.set(0);
} else {
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
}
return;
}
const checkbit = bit_count - shift - @boolToInt(signedness == .signed);
// If `checkbit` and more significant bits are zero, no overflow will take place.
if (checkbit >= a.limbs.len * limb_bits) {
// `checkbit` is outside the range of a, so definitely no overflow will take place. We
// can defer to a normal shift.
// Note that if `a` is normalized (which we assume), this checks for set bits in the upper limbs.
// Note, in this case r should already have enough limbs required to perform the normal shift.
// In this case the shift of the most significant limb may still overflow.
r.shiftLeft(a, shift);
return;
} else if (checkbit < (a.limbs.len - 1) * limb_bits) {
// `checkbit` is not in the most significant limb. If `a` is normalized the most significant
// limb will not be zero, so in this case we need to saturate. Note that `a.limbs.len` must be
// at least one according to normalization rules.
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
return;
}
// Generate a mask with the bits to check in the most signficant limb. We'll need to check
// all bits with equal or more significance than checkbit.
// const msb = @truncate(Log2Limb, checkbit);
// const checkmask = (@as(Limb, 1) << msb) -% 1;
if (a.limbs[a.limbs.len - 1] >> @truncate(Log2Limb, checkbit) != 0) {
// Need to saturate.
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
return;
}
// This shift should not be able to overflow, so invoke llshl and normalize manually
// to avoid the extra required limb.
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / limb_bits));
r.positive = a.positive;
}
/// r = a >> shift
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void {
if (a.limbs.len <= shift / limb_bits) {
r.len = 1;
r.positive = true;
r.limbs[0] = 0;
return;
}
llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len - (shift / limb_bits));
r.positive = a.positive;
}
/// r = ~a under 2s complement wrapping semantics.
/// r may alias with a.
///
/// Assets that r has enough limbs to store the result. The upper bound Limb count is
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn bitNotWrap(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
r.copy(a.negate());
const negative_one = Const{ .limbs = &.{1}, .positive = false };
_ = r.addWrap(r.toConst(), negative_one, signedness, bit_count);
}
/// r = a | b under 2s complement semantics.
/// r may alias with a or b.
///
/// a and b are zero-extended to the longer of a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `math.max(a.limbs.len, b.limbs.len)`.
pub fn bitOr(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, llsignedor does not support zero.
if (a.eqZero()) {
r.copy(b);
return;
} else if (b.eqZero()) {
r.copy(a);
return;
}
if (a.limbs.len >= b.limbs.len) {
r.positive = llsignedor(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(if (b.positive) a.limbs.len else b.limbs.len);
} else {
r.positive = llsignedor(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(if (a.positive) b.limbs.len else a.limbs.len);
}
}
/// r = a & b under 2s complement semantics.
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result.
/// If a or b is positive, the upper bound is `math.min(a.limbs.len, b.limbs.len)`.
/// If a and b are negative, the upper bound is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn bitAnd(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, llsignedand does not support zero.
if (a.eqZero()) {
r.copy(a);
return;
} else if (b.eqZero()) {
r.copy(b);
return;
}
if (a.limbs.len >= b.limbs.len) {
r.positive = llsignedand(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(if (a.positive or b.positive) b.limbs.len else a.limbs.len + 1);
} else {
r.positive = llsignedand(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(if (a.positive or b.positive) a.limbs.len else b.limbs.len + 1);
}
}
/// r = a ^ b under 2s complement semantics.
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. If a and b share the same signedness, the
/// upper bound is `math.max(a.limbs.len, b.limbs.len)`. Otherwise, if either a or b is negative
/// but not both, the upper bound is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn bitXor(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, because llsignedxor does not support negative zero.
if (a.eqZero()) {
r.copy(b);
return;
} else if (b.eqZero()) {
r.copy(a);
return;
}
if (a.limbs.len > b.limbs.len) {
r.positive = llsignedxor(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(a.limbs.len + @boolToInt(a.positive != b.positive));
} else {
r.positive = llsignedxor(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(b.limbs.len + @boolToInt(a.positive != b.positive));
}
}
/// rma may alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is
/// `math.min(x.limbs.len, y.limbs.len)`.
///
/// `limbs_buffer` is used for temporary storage during the operation. When this function returns,
/// it will have the same length as it had when the function was called.
pub fn gcd(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
const prev_len = limbs_buffer.items.len;
defer limbs_buffer.shrinkRetainingCapacity(prev_len);
const x_copy = if (rma.limbs.ptr == x.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(x.limbs);
break :blk x.toMutable(limbs_buffer.items[start..]).toConst();
} else x;
const y_copy = if (rma.limbs.ptr == y.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(y.limbs);
break :blk y.toMutable(limbs_buffer.items[start..]).toConst();
} else y;
return gcdLehmer(rma, x_copy, y_copy, limbs_buffer);
}
/// q = a ^ b
///
/// r may not alias a.
///
/// Asserts that `r` has enough limbs to store the result. Upper bound is
/// `calcPowLimbsBufferLen(a.bitCountAbs(), b)`.
///
/// `limbs_buffer` is used for temporary storage.
/// The amount required is given by `calcPowLimbsBufferLen`.
pub fn pow(r: *Mutable, a: Const, b: u32, limbs_buffer: []Limb) !void {
assert(r.limbs.ptr != a.limbs.ptr); // illegal aliasing
// Handle all the trivial cases first
switch (b) {
0 => {
// a^0 = 1
return r.set(1);
},
1 => {
// a^1 = a
return r.copy(a);
},
else => {},
}
if (a.eqZero()) {
// 0^b = 0
return r.set(0);
} else if (a.limbs.len == 1 and a.limbs[0] == 1) {
// 1^b = 1 and -1^b = ±1
r.set(1);
r.positive = a.positive or (b & 1) == 0;
return;
}
// Here a>1 and b>1
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
assert(r.limbs.len >= needed_limbs);
assert(limbs_buffer.len >= needed_limbs);
llpow(r.limbs, a.limbs, b, limbs_buffer);
r.normalize(needed_limbs);
r.positive = a.positive or (b & 1) == 0;
}
/// rma may not alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is given by `calcGcdNoAliasLimbLen`.
///
/// `limbs_buffer` is used for temporary storage during the operation.
pub fn gcdNoAlias(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
assert(rma.limbs.ptr != x.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != y.limbs.ptr); // illegal aliasing
return gcdLehmer(rma, x, y, limbs_buffer);
}
fn gcdLehmer(result: *Mutable, xa: Const, ya: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
var x = try xa.toManaged(limbs_buffer.allocator);
defer x.deinit();
x.abs();
var y = try ya.toManaged(limbs_buffer.allocator);
defer y.deinit();
y.abs();
if (x.toConst().order(y.toConst()) == .lt) {
x.swap(&y);
}
var t_big = try Managed.init(limbs_buffer.allocator);
defer t_big.deinit();
var r = try Managed.init(limbs_buffer.allocator);
defer r.deinit();
var tmp_x = try Managed.init(limbs_buffer.allocator);
defer tmp_x.deinit();
while (y.len() > 1 and !y.eqZero()) {
assert(x.isPositive() and y.isPositive());
assert(x.len() >= y.len());
var xh: SignedDoubleLimb = x.limbs[x.len() - 1];
var yh: SignedDoubleLimb = if (x.len() > y.len()) 0 else y.limbs[x.len() - 1];
var A: SignedDoubleLimb = 1;
var B: SignedDoubleLimb = 0;
var C: SignedDoubleLimb = 0;
var D: SignedDoubleLimb = 1;
while (yh + C != 0 and yh + D != 0) {
const q = @divFloor(xh + A, yh + C);
const qp = @divFloor(xh + B, yh + D);
if (q != qp) {
break;
}
var t = A - q * C;
A = C;
C = t;
t = B - q * D;
B = D;
D = t;
t = xh - q * yh;
xh = yh;
yh = t;
}
if (B == 0) {
// t_big = x % y, r is unused
try r.divTrunc(&t_big, &x, &y);
assert(t_big.isPositive());
x.swap(&y);
y.swap(&t_big);
} else {
var storage: [8]Limb = undefined;
const Ap = fixedIntFromSignedDoubleLimb(A, storage[0..2]).toManaged(limbs_buffer.allocator);
const Bp = fixedIntFromSignedDoubleLimb(B, storage[2..4]).toManaged(limbs_buffer.allocator);
const Cp = fixedIntFromSignedDoubleLimb(C, storage[4..6]).toManaged(limbs_buffer.allocator);
const Dp = fixedIntFromSignedDoubleLimb(D, storage[6..8]).toManaged(limbs_buffer.allocator);
// t_big = Ax + By
try r.mul(&x, &Ap);
try t_big.mul(&y, &Bp);
try t_big.add(&r, &t_big);
// u = Cx + Dy, r as u
try tmp_x.copy(x.toConst());
try x.mul(&tmp_x, &Cp);
try r.mul(&y, &Dp);
try r.add(&x, &r);
x.swap(&t_big);
y.swap(&r);
}
}
// euclidean algorithm
assert(x.toConst().order(y.toConst()) != .lt);
while (!y.toConst().eqZero()) {
try t_big.divTrunc(&r, &x, &y);
x.swap(&y);
y.swap(&r);
}
result.copy(x.toConst());
}
// Truncates by default.
fn div(q: *Mutable, r: *Mutable, x: *Mutable, y: *Mutable) void {
assert(!y.eqZero()); // division by zero
assert(q != r); // illegal aliasing
const q_positive = (x.positive == y.positive);
const r_positive = x.positive;
if (x.toConst().orderAbs(y.toConst()) == .lt) {
// q may alias x so handle r first.
r.copy(x.toConst());
r.positive = r_positive;
q.set(0);
return;
}
// Handle trailing zero-words of divisor/dividend. These are not handled in the following
// algorithms.
// Note, there must be a non-zero limb for either.
// const x_trailing = std.mem.indexOfScalar(Limb, x.limbs[0..x.len], 0).?;
// const y_trailing = std.mem.indexOfScalar(Limb, y.limbs[0..y.len], 0).?;
const x_trailing = for (x.limbs[0..x.len]) |xi, i| {
if (xi != 0) break i;
} else unreachable;
const y_trailing = for (y.limbs[0..y.len]) |yi, i| {
if (yi != 0) break i;
} else unreachable;
const xy_trailing = math.min(x_trailing, y_trailing);
if (y.len - xy_trailing == 1) {
const divisor = y.limbs[y.len - 1];
// Optimization for small divisor. By using a half limb we can avoid requiring DoubleLimb
// divisions in the hot code path. This may often require compiler_rt software-emulation.
if (divisor < maxInt(HalfLimb)) {
lldiv0p5(q.limbs, &r.limbs[0], x.limbs[xy_trailing..x.len], @intCast(HalfLimb, divisor));
} else {
lldiv1(q.limbs, &r.limbs[0], x.limbs[xy_trailing..x.len], divisor);
}
q.normalize(x.len - xy_trailing);
q.positive = q_positive;
r.len = 1;
r.positive = r_positive;
} else {
// Shrink x, y such that the trailing zero limbs shared between are removed.
var x0 = Mutable{
.limbs = x.limbs[xy_trailing..],
.len = x.len - xy_trailing,
.positive = true,
};
var y0 = Mutable{
.limbs = y.limbs[xy_trailing..],
.len = y.len - xy_trailing,
.positive = true,
};
divmod(q, r, &x0, &y0);
q.positive = q_positive;
r.positive = r_positive;
}
if (xy_trailing != 0) {
// Manually shift here since we know its limb aligned.
mem.copyBackwards(Limb, r.limbs[xy_trailing..], r.limbs[0..r.len]);
mem.set(Limb, r.limbs[0..xy_trailing], 0);
r.len += xy_trailing;
}
}
/// Handbook of Applied Cryptography, 14.20
///
/// x = qy + r where 0 <= r < y
/// y is modified but returned intact.
fn divmod(
q: *Mutable,
r: *Mutable,
x: *Mutable,
y: *Mutable,
) void {
// 0.
// Normalize so that y[t] > b/2
const lz = @clz(y.limbs[y.len - 1]);
const norm_shift = if (lz == 0 and y.toConst().isOdd())
limb_bits // Force an extra limb so that y is even.
else
lz;
x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift);
const n = x.len - 1;
const t = y.len - 1;
const shift = n - t;
// 1.
// for 0 <= j <= n - t, set q[j] to 0
q.len = shift + 1;
q.positive = true;
mem.set(Limb, q.limbs[0..q.len], 0);
// 2.
// while x >= y * b^(n - t):
// x -= y * b^(n - t)
// q[n - t] += 1
// Note, this algorithm is performed only once if y[t] > radix/2 and y is even, which we
// enforced in step 0. This means we can replace the while with an if.
// Note, multiplication by b^(n - t) comes down to shifting to the right by n - t limbs.
// We can also replace x >= y * b^(n - t) by x/b^(n - t) >= y, and use shifts for that.
{
// x >= y * b^(n - t) can be replaced by x/b^(n - t) >= y.
// 'divide' x by b^(n - t)
var tmp = Mutable{
.limbs = x.limbs[shift..],
.len = x.len - shift,
.positive = true,
};
if (tmp.toConst().order(y.toConst()) != .lt) {
// Perform x -= y * b^(n - t)
// Note, we can subtract y from x[n - t..] and get the result without shifting.
// We can also re-use tmp which already contains the relevant part of x. Note that
// this also edits x.
// Due to the check above, this cannot underflow.
tmp.sub(tmp.toConst(), y.toConst());
// tmp.sub normalized tmp, but we need to normalize x now.
x.limbs.len = tmp.limbs.len + shift;
q.limbs[shift] += 1;
}
}
// 3.
// for i from n down to t + 1, do
var i = n;
while (i >= t + 1) : (i -= 1) {
const k = i - t - 1;
// 3.1.
// if x_i == y_t:
// q[i - t - 1] = b - 1
// else:
// q[i - t - 1] = (x[i] * b + x[i - 1]) / y[t]
if (x.limbs[i] == y.limbs[t]) {
q.limbs[k] = maxInt(Limb);
} else {
const q0 = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const n0 = @as(DoubleLimb, y.limbs[t]);
q.limbs[k] = @intCast(Limb, q0 / n0);
}
// 3.2
// while q[i - t - 1] * (y[t] * b + y[t - 1] > x[i] * b * b + x[i - 1] + x[i - 2]:
// q[i - t - 1] -= 1
// Note, if y[t] > b / 2 this part is repeated no more than twice.
// Extract from y.
const y0 = if (t > 0) y.limbs[t - 1] else 0;
const y1 = y.limbs[t];
// Extract from x.
// Note, big endian.
const tmp0 = [_]Limb{
x.limbs[i],
if (i >= 1) x.limbs[i - 1] else 0,
if (i >= 2) x.limbs[i - 2] else 0,
};
while (true) {
// Ad-hoc 2x1 multiplication with q[i - t - 1].
// Note, big endian.
var tmp1 = [_]Limb{ 0, undefined, undefined };
tmp1[2] = addMulLimbWithCarry(0, y0, q.limbs[k], &tmp1[0]);
tmp1[1] = addMulLimbWithCarry(0, y1, q.limbs[k], &tmp1[0]);
// Big-endian compare
if (mem.order(Limb, &tmp1, &tmp0) != .gt)
break;
q.limbs[k] -= 1;
}
// 3.3.
// x -= q[i - t - 1] * y * b^(i - t - 1)
// Note, we multiply by a single limb here.
// The shift doesn't need to be performed if we add the result of the first multiplication
// to x[i - t - 1].
const underflow = llmulLimb(.sub, x.limbs[k..x.len], y.limbs[0..y.len], q.limbs[k]);
// 3.4.
// if x < 0:
// x += y * b^(i - t - 1)
// q[i - t - 1] -= 1
// Note, we check for x < 0 using the underflow flag from the previous operation.
if (underflow) {
// While we didn't properly set the signedness of x, this operation should 'flow' it back to positive.
llaccum(.add, x.limbs[k..x.len], y.limbs[0..y.len]);
q.limbs[k] -= 1;
}
}
x.normalize(x.len);
q.normalize(q.len);
// De-normalize r and y.
r.shiftRight(x.toConst(), norm_shift);
y.shiftRight(y.toConst(), norm_shift);
}
/// Truncate an integer to a number of bits, following 2s-complement semantics.
/// r may alias a.
///
/// Asserts `r` has enough storage to store the result.
/// The upper bound is `calcTwosCompLimbCount(a.len)`.
pub fn truncate(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Handle 0-bit integers.
if (req_limbs == 0 or a.eqZero()) {
r.set(0);
return;
}
const bit = @truncate(Log2Limb, bit_count - 1);
const signmask = @as(Limb, 1) << bit; // 0b0..010...0 where 1 is the sign bit.
const mask = (signmask << 1) -% 1; // 0b0..01..1 where the leftmost 1 is the sign bit.
if (!a.positive) {
// Convert the integer from sign-magnitude into twos-complement.
// -x = ~(x - 1)
// Note, we simply take req_limbs * @bitSizeOf(Limb) as the
// target bit count.
r.addScalar(a.abs(), -1);
// Zero-extend the result
if (req_limbs > r.len) {
mem.set(Limb, r.limbs[r.len..req_limbs], 0);
}
// Truncate to required number of limbs.
assert(r.limbs.len >= req_limbs);
r.len = req_limbs;
// Without truncating, we can already peek at the sign bit of the result here.
// Note that it will be 0 if the result is negative, as we did not apply the flip here.
// If the result is negative, we have
// -(-x & mask)
// = ~(~(x - 1) & mask) + 1
// = ~(~((x - 1) | ~mask)) + 1
// = ((x - 1) | ~mask)) + 1
// Note, this is only valid for the target bits and not the upper bits
// of the most significant limb. Those still need to be cleared.
// Also note that `mask` is zero for all other bits, reducing to the identity.
// This means that we still need to use & mask to clear off the upper bits.
if (signedness == .signed and r.limbs[r.len - 1] & signmask == 0) {
// Re-add the one and negate to get the result.
r.limbs[r.len - 1] &= mask;
// Note, addition cannot require extra limbs here as we did a subtraction before.
r.addScalar(r.toConst(), 1);
r.normalize(r.len);
r.positive = false;
} else {
llnot(r.limbs[0..r.len]);
r.limbs[r.len - 1] &= mask;
r.normalize(r.len);
}
} else {
if (a.limbs.len < req_limbs) {
// Integer fits within target bits, no wrapping required.
r.copy(a);
return;
}
r.copy(.{
.positive = a.positive,
.limbs = a.limbs[0..req_limbs],
});
r.limbs[r.len - 1] &= mask;
r.normalize(r.len);
if (signedness == .signed and r.limbs[r.len - 1] & signmask != 0) {
// Convert 2s-complement back to sign-magnitude.
// Sign-extend the upper bits so that they are inverted correctly.
r.limbs[r.len - 1] |= ~mask;
llnot(r.limbs[0..r.len]);
// Note, can only overflow if r holds 0xFFF...F which can only happen if
// a holds 0.
r.addScalar(r.toConst(), 1);
r.positive = false;
}
}
}
/// Saturate an integer to a number of bits, following 2s-complement semantics.
/// r may alias a.
///
/// Asserts `r` has enough storage to store the result.
/// The upper bound is `calcTwosCompLimbCount(a.len)`.
pub fn saturate(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
if (!a.fitsInTwosComp(signedness, bit_count)) {
r.setTwosCompIntLimit(if (r.positive) .max else .min, signedness, bit_count);
}
}
/// Read the value of `x` from `buffer`
/// Asserts that `buffer`, `abi_size`, and `bit_count` are large enough to store the value.
///
/// The contents of `buffer` are interpreted as if they were the contents of
/// @ptrCast(*[abi_size]const u8, &x). Byte ordering is determined by `endian`
/// and any required padding bits are expected on the MSB end.
pub fn readTwosComplement(
x: *Mutable,
buffer: []const u8,
bit_count: usize,
abi_size: usize,
endian: Endian,
signedness: Signedness,
) void {
if (bit_count == 0) {
x.limbs[0] = 0;
x.len = 1;
x.positive = true;
return;
}
// byte_count is our total read size: it cannot exceed abi_size,
// but may be less as long as it includes the required bits
const limb_count = calcTwosCompLimbCount(bit_count);
const byte_count = std.math.min(abi_size, @sizeOf(Limb) * limb_count);
assert(8 * byte_count >= bit_count);
// Check whether the input is negative
var positive = true;
if (signedness == .signed) {
var last_byte = switch (endian) {
.Little => ((bit_count + 7) / 8) - 1,
.Big => abi_size - ((bit_count + 7) / 8),
};
const sign_bit = @as(u8, 1) << @intCast(u3, (bit_count - 1) % 8);
positive = ((buffer[last_byte] & sign_bit) == 0);
}
// Copy all complete limbs
var carry: u1 = if (positive) 0 else 1;
var limb_index: usize = 0;
while (limb_index < bit_count / @bitSizeOf(Limb)) : (limb_index += 1) {
var buf_index = switch (endian) {
.Little => @sizeOf(Limb) * limb_index,
.Big => abi_size - (limb_index + 1) * @sizeOf(Limb),
};
const limb_buf = @ptrCast(*const [@sizeOf(Limb)]u8, buffer[buf_index..]);
var limb = mem.readInt(Limb, limb_buf, endian);
// 2's complement (bitwise not, then add carry bit)
if (!positive) carry = @boolToInt(@addWithOverflow(Limb, ~limb, carry, &limb));
x.limbs[limb_index] = limb;
}
// Copy the remaining N bytes (N <= @sizeOf(Limb))
var bytes_read = limb_index * @sizeOf(Limb);
if (bytes_read != byte_count) {
var limb: Limb = 0;
while (bytes_read != byte_count) {
const read_size = std.math.floorPowerOfTwo(usize, byte_count - bytes_read);
var int_buffer = switch (endian) {
.Little => buffer[bytes_read..],
.Big => buffer[(abi_size - bytes_read - read_size)..],
};
limb |= @intCast(Limb, switch (read_size) {
1 => mem.readInt(u8, int_buffer[0..1], endian),
2 => mem.readInt(u16, int_buffer[0..2], endian),
4 => mem.readInt(u32, int_buffer[0..4], endian),
8 => mem.readInt(u64, int_buffer[0..8], endian),
16 => mem.readInt(u128, int_buffer[0..16], endian),
else => unreachable,
}) << @intCast(Log2Limb, 8 * (bytes_read % @sizeOf(Limb)));
bytes_read += read_size;
}
// 2's complement (bitwise not, then add carry bit)
if (!positive) _ = @addWithOverflow(Limb, ~limb, carry, &limb);
// Mask off any unused bits
const valid_bits = @intCast(Log2Limb, bit_count % @bitSizeOf(Limb));
const mask = (@as(Limb, 1) << valid_bits) -% 1; // 0b0..01..1 with (valid_bits_in_limb) trailing ones
limb &= mask;
x.limbs[limb_count - 1] = limb;
}
x.positive = positive;
x.len = limb_count;
x.normalize(x.len);
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
fn normalize(r: *Mutable, length: usize) void {
r.len = llnormalize(r.limbs[0..length]);
}
};
/// A arbitrary-precision big integer, with a fixed set of immutable limbs.
pub const Const = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []const Limb,
positive: bool,
/// The result is an independent resource which is managed by the caller.
pub fn toManaged(self: Const, allocator: Allocator) Allocator.Error!Managed {
const limbs = try allocator.alloc(Limb, math.max(Managed.default_capacity, self.limbs.len));
mem.copy(Limb, limbs, self.limbs);
return Managed{
.allocator = allocator,
.limbs = limbs,
.metadata = if (self.positive)
self.limbs.len & ~Managed.sign_bit
else
self.limbs.len | Managed.sign_bit,
};
}
/// Asserts `limbs` is big enough to store the value.
pub fn toMutable(self: Const, limbs: []Limb) Mutable {
mem.copy(Limb, limbs, self.limbs[0..self.limbs.len]);
return .{
.limbs = limbs,
.positive = self.positive,
.len = self.limbs.len,
};
}
pub fn dump(self: Const) void {
for (self.limbs[0..self.limbs.len]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("positive={}\n", .{self.positive});
}
pub fn abs(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = true,
};
}
pub fn negate(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = !self.positive,
};
}
pub fn isOdd(self: Const) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Const) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Const) usize {
return (self.limbs.len - 1) * limb_bits + (limb_bits - @clz(self.limbs[self.limbs.len - 1]));
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Const) usize {
var bits = self.bitCountAbs();
// If the entire value has only one bit set (e.g. 0b100000000) then the negation in twos
// complement requires one less bit.
if (!self.positive) block: {
bits += 1;
if (@popCount(self.limbs[self.limbs.len - 1]) == 1) {
for (self.limbs[0 .. self.limbs.len - 1]) |limb| {
if (@popCount(limb) != 0) {
break :block;
}
}
bits -= 1;
}
}
return bits;
}
pub fn fitsInTwosComp(self: Const, signedness: Signedness, bit_count: usize) bool {
if (self.eqZero()) {
return true;
}
if (signedness == .unsigned and !self.positive) {
return false;
}
const req_bits = self.bitCountTwosComp() + @boolToInt(self.positive and signedness == .signed);
return bit_count >= req_bits;
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Const, comptime T: type) bool {
const info = @typeInfo(T).Int;
return self.fitsInTwosComp(info.signedness, info.bits);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
/// TODO See if we can make this exact.
pub fn sizeInBaseUpperBound(self: Const, base: usize) usize {
const bit_count = @as(usize, @boolToInt(!self.positive)) + self.bitCountAbs();
return (bit_count / math.log2(base)) + 2;
}
pub const ConvertError = error{
NegativeIntoUnsigned,
TargetTooSmall,
};
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Const, comptime T: type) ConvertError!T {
switch (@typeInfo(T)) {
.Int => |info| {
const UT = std.meta.Int(.unsigned, info.bits);
if (!self.fitsInTwosComp(info.signedness, info.bits)) {
return error.TargetTooSmall;
}
var r: UT = 0;
if (@sizeOf(UT) <= @sizeOf(Limb)) {
r = @intCast(UT, self.limbs[0]);
} else {
for (self.limbs[0..self.limbs.len]) |_, ri| {
const limb = self.limbs[self.limbs.len - ri - 1];
r <<= limb_bits;
r |= limb;
}
}
if (info.signedness == .unsigned) {
return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned;
} else {
if (self.positive) {
return @intCast(T, r);
} else {
if (math.cast(T, r)) |ok| {
return -ok;
} else {
return minInt(T);
}
}
}
},
else => @compileError("cannot convert Const to type " ++ @typeName(T)),
}
}
/// To allow `std.fmt.format` to work with this type.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Const,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
_ = options;
comptime var radix = 10;
comptime var case: std.fmt.Case = .lower;
if (fmt.len == 0 or comptime mem.eql(u8, fmt, "d")) {
radix = 10;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "b")) {
radix = 2;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "x")) {
radix = 16;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "X")) {
radix = 16;
case = .upper;
} else {
@compileError("Unknown format string: '" ++ fmt ++ "'");
}
var limbs: [128]Limb = undefined;
const needed_limbs = calcDivLimbsBufferLen(self.limbs.len, 1);
if (needed_limbs > limbs.len)
return out_stream.writeAll("(BigInt)");
// This is the inverse of calcDivLimbsBufferLen
const available_len = (limbs.len / 3) - 2;
const biggest: Const = .{
.limbs = &([1]Limb{comptime math.maxInt(Limb)} ** available_len),
.positive = false,
};
var buf: [biggest.sizeInBaseUpperBound(radix)]u8 = undefined;
const len = self.toString(&buf, radix, case, &limbs);
return out_stream.writeAll(buf[0..len]);
}
/// Converts self to a string in the requested base.
/// Caller owns returned memory.
/// Asserts that `base` is in the range [2, 16].
/// See also `toString`, a lower level function than this.
pub fn toStringAlloc(self: Const, allocator: Allocator, base: u8, case: std.fmt.Case) Allocator.Error![]u8 {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
return allocator.dupe(u8, "0");
}
const string = try allocator.alloc(u8, self.sizeInBaseUpperBound(base));
errdefer allocator.free(string);
const limbs = try allocator.alloc(Limb, calcToStringLimbsBufferLen(self.limbs.len, base));
defer allocator.free(limbs);
return allocator.shrink(string, self.toString(string, base, case, limbs));
}
/// Converts self to a string in the requested base.
/// Asserts that `base` is in the range [2, 16].
/// `string` is a caller-provided slice of at least `sizeInBaseUpperBound` bytes,
/// where the result is written to.
/// Returns the length of the string.
/// `limbs_buffer` is caller-provided memory for `toString` to use as a working area. It must have
/// length of at least `calcToStringLimbsBufferLen`.
/// In the case of power-of-two base, `limbs_buffer` is ignored.
/// See also `toStringAlloc`, a higher level function than this.
pub fn toString(self: Const, string: []u8, base: u8, case: std.fmt.Case, limbs_buffer: []Limb) usize {
assert(base >= 2);
assert(base <= 16);
if (self.eqZero()) {
string[0] = '0';
return 1;
}
var digits_len: usize = 0;
// Power of two: can do a single pass and use masks to extract digits.
if (math.isPowerOfTwo(base)) {
const base_shift = math.log2_int(Limb, base);
outer: for (self.limbs[0..self.limbs.len]) |limb| {
var shift: usize = 0;
while (shift < limb_bits) : (shift += base_shift) {
const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & @as(Limb, base - 1));
const ch = std.fmt.digitToChar(r, case);
string[digits_len] = ch;
digits_len += 1;
// If we hit the end, it must be all zeroes from here.
if (digits_len == string.len) break :outer;
}
}
// Always will have a non-zero digit somewhere.
while (string[digits_len - 1] == '0') {
digits_len -= 1;
}
} else {
// Non power-of-two: batch divisions per word size.
// We use a HalfLimb here so the division uses the faster lldiv0p5 over lldiv1 codepath.
const digits_per_limb = math.log(HalfLimb, base, maxInt(HalfLimb));
var limb_base: Limb = 1;
var j: usize = 0;
while (j < digits_per_limb) : (j += 1) {
limb_base *= base;
}
const b: Const = .{ .limbs = &[_]Limb{limb_base}, .positive = true };
var q: Mutable = .{
.limbs = limbs_buffer[0 .. self.limbs.len + 2],
.positive = true, // Make absolute by ignoring self.positive.
.len = self.limbs.len,
};
mem.copy(Limb, q.limbs, self.limbs);
var r: Mutable = .{
.limbs = limbs_buffer[q.limbs.len..][0..self.limbs.len],
.positive = true,
.len = 1,
};
r.limbs[0] = 0;
const rest_of_the_limbs_buf = limbs_buffer[q.limbs.len + r.limbs.len ..];
while (q.len >= 2) {
// Passing an allocator here would not be helpful since this division is destroying
// information, not creating it. [TODO citation needed]
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf);
var r_word = r.limbs[0];
var i: usize = 0;
while (i < digits_per_limb) : (i += 1) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), case);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
{
assert(q.len == 1);
var r_word = q.limbs[0];
while (r_word != 0) {
const ch = std.fmt.digitToChar(@intCast(u8, r_word % base), case);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
}
if (!self.positive) {
string[digits_len] = '-';
digits_len += 1;
}
const s = string[0..digits_len];
mem.reverse(u8, s);
return s.len;
}
/// Write the value of `x` into `buffer`
/// Asserts that `buffer`, `abi_size`, and `bit_count` are large enough to store the value.
///
/// `buffer` is filled so that its contents match what would be observed via
/// @ptrCast(*[abi_size]const u8, &x). Byte ordering is determined by `endian`,
/// and any required padding bits are added on the MSB end.
pub fn writeTwosComplement(x: Const, buffer: []u8, bit_count: usize, abi_size: usize, endian: Endian) void {
// byte_count is our total write size
const byte_count = abi_size;
assert(8 * byte_count >= bit_count);
assert(buffer.len >= byte_count);
assert(x.fitsInTwosComp(if (x.positive) .unsigned else .signed, bit_count));
// Copy all complete limbs
var carry: u1 = if (x.positive) 0 else 1;
var limb_index: usize = 0;
while (limb_index < byte_count / @sizeOf(Limb)) : (limb_index += 1) {
var buf_index = switch (endian) {
.Little => @sizeOf(Limb) * limb_index,
.Big => abi_size - (limb_index + 1) * @sizeOf(Limb),
};
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;
// 2's complement (bitwise not, then add carry bit)
if (!x.positive) carry = @boolToInt(@addWithOverflow(Limb, ~limb, carry, &limb));
var limb_buf = @ptrCast(*[@sizeOf(Limb)]u8, buffer[buf_index..]);
mem.writeInt(Limb, limb_buf, limb, endian);
}
// Copy the remaining N bytes (N < @sizeOf(Limb))
var bytes_written = limb_index * @sizeOf(Limb);
if (bytes_written != byte_count) {
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;
// 2's complement (bitwise not, then add carry bit)
if (!x.positive) _ = @addWithOverflow(Limb, ~limb, carry, &limb);
while (bytes_written != byte_count) {
const write_size = std.math.floorPowerOfTwo(usize, byte_count - bytes_written);
var int_buffer = switch (endian) {
.Little => buffer[bytes_written..],
.Big => buffer[(abi_size - bytes_written - write_size)..],
};
if (write_size == 1) {
mem.writeInt(u8, int_buffer[0..1], @truncate(u8, limb), endian);
} else if (@sizeOf(Limb) >= 2 and write_size == 2) {
mem.writeInt(u16, int_buffer[0..2], @truncate(u16, limb), endian);
} else if (@sizeOf(Limb) >= 4 and write_size == 4) {
mem.writeInt(u32, int_buffer[0..4], @truncate(u32, limb), endian);
} else if (@sizeOf(Limb) >= 8 and write_size == 8) {
mem.writeInt(u64, int_buffer[0..8], @truncate(u64, limb), endian);
} else if (@sizeOf(Limb) >= 16 and write_size == 16) {
mem.writeInt(u128, int_buffer[0..16], @truncate(u128, limb), endian);
} else if (@sizeOf(Limb) >= 32) {
@compileError("@sizeOf(Limb) exceeded supported range");
} else unreachable;
limb >>= @intCast(Log2Limb, 8 * write_size);
bytes_written += write_size;
}
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if
/// `|a| < |b|`, `|a| == |b|`, or `|a| > |b|` respectively.
pub fn orderAbs(a: Const, b: Const) math.Order {
if (a.limbs.len < b.limbs.len) {
return .lt;
}
if (a.limbs.len > b.limbs.len) {
return .gt;
}
var i: usize = a.limbs.len - 1;
while (i != 0) : (i -= 1) {
if (a.limbs[i] != b.limbs[i]) {
break;
}
}
if (a.limbs[i] < b.limbs[i]) {
return .lt;
} else if (a.limbs[i] > b.limbs[i]) {
return .gt;
} else {
return .eq;
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if `a < b`, `a == b` or `a > b` respectively.
pub fn order(a: Const, b: Const) math.Order {
if (a.positive != b.positive) {
return if (a.positive) .gt else .lt;
} else {
const r = orderAbs(a, b);
return if (a.positive) r else switch (r) {
.lt => math.Order.gt,
.eq => math.Order.eq,
.gt => math.Order.lt,
};
}
}
/// Same as `order` but the right-hand operand is a primitive integer.
pub fn orderAgainstScalar(lhs: Const, scalar: anytype) math.Order {
var limbs: [calcLimbLen(scalar)]Limb = undefined;
const rhs = Mutable.init(&limbs, scalar);
return order(lhs, rhs.toConst());
}
/// Returns true if `a == 0`.
pub fn eqZero(a: Const) bool {
var d: Limb = 0;
for (a.limbs) |limb| d |= limb;
return d == 0;
}
/// Returns true if `|a| == |b|`.
pub fn eqAbs(a: Const, b: Const) bool {
return orderAbs(a, b) == .eq;
}
/// Returns true if `a == b`.
pub fn eq(a: Const, b: Const) bool {
return order(a, b) == .eq;
}
};
/// An arbitrary-precision big integer along with an allocator which manages the memory.
///
/// Memory is allocated as needed to ensure operations never overflow. The range
/// is bounded only by available memory.
pub const Managed = struct {
pub const sign_bit: usize = 1 << (@typeInfo(usize).Int.bits - 1);
/// Default number of limbs to allocate on creation of a `Managed`.
pub const default_capacity = 4;
/// Allocator used by the Managed when requesting memory.
allocator: Allocator,
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represent as Managed.len() == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []Limb,
/// High bit is the sign bit. If set, Managed is negative, else Managed is positive.
/// The remaining bits represent the number of limbs used by Managed.
metadata: usize,
/// Creates a new `Managed`. `default_capacity` limbs will be allocated immediately.
/// The integer value after initializing is `0`.
pub fn init(allocator: Allocator) !Managed {
return initCapacity(allocator, default_capacity);
}
pub fn toMutable(self: Managed) Mutable {
return .{
.limbs = self.limbs,
.positive = self.isPositive(),
.len = self.len(),
};
}
pub fn toConst(self: Managed) Const {
return .{
.limbs = self.limbs[0..self.len()],
.positive = self.isPositive(),
};
}
/// Creates a new `Managed` with value `value`.
///
/// This is identical to an `init`, followed by a `set`.
pub fn initSet(allocator: Allocator, value: anytype) !Managed {
var s = try Managed.init(allocator);
try s.set(value);
return s;
}
/// Creates a new Managed with a specific capacity. If capacity < default_capacity then the
/// default capacity will be used instead.
/// The integer value after initializing is `0`.
pub fn initCapacity(allocator: Allocator, capacity: usize) !Managed {
return Managed{
.allocator = allocator,
.metadata = 1,
.limbs = block: {
const limbs = try allocator.alloc(Limb, math.max(default_capacity, capacity));
limbs[0] = 0;
break :block limbs;
},
};
}
/// Returns the number of limbs currently in use.
pub fn len(self: Managed) usize {
return self.metadata & ~sign_bit;
}
/// Returns whether an Managed is positive.
pub fn isPositive(self: Managed) bool {
return self.metadata & sign_bit == 0;
}
/// Sets the sign of an Managed.
pub fn setSign(self: *Managed, positive: bool) void {
if (positive) {
self.metadata &= ~sign_bit;
} else {
self.metadata |= sign_bit;
}
}
/// Sets the length of an Managed.
///
/// If setLen is used, then the Managed must be normalized to suit.
pub fn setLen(self: *Managed, new_len: usize) void {
self.metadata &= sign_bit;
self.metadata |= new_len;
}
pub fn setMetadata(self: *Managed, positive: bool, length: usize) void {
self.metadata = if (positive) length & ~sign_bit else length | sign_bit;
}
/// Ensures an Managed has enough space allocated for capacity limbs. If the Managed does not have
/// sufficient capacity, the exact amount will be allocated. This occurs even if the requested
/// capacity is only greater than the current capacity by one limb.
pub fn ensureCapacity(self: *Managed, capacity: usize) !void {
if (capacity <= self.limbs.len) {
return;
}
self.limbs = try self.allocator.realloc(self.limbs, capacity);
}
/// Frees all associated memory.
pub fn deinit(self: *Managed) void {
self.allocator.free(self.limbs);
self.* = undefined;
}
/// Returns a `Managed` with the same value. The returned `Managed` is a deep copy and
/// can be modified separately from the original, and its resources are managed
/// separately from the original.
pub fn clone(other: Managed) !Managed {
return other.cloneWithDifferentAllocator(other.allocator);
}
pub fn cloneWithDifferentAllocator(other: Managed, allocator: Allocator) !Managed {
return Managed{
.allocator = allocator,
.metadata = other.metadata,
.limbs = block: {
var limbs = try allocator.alloc(Limb, other.len());
mem.copy(Limb, limbs[0..], other.limbs[0..other.len()]);
break :block limbs;
},
};
}
/// Copies the value of the integer to an existing `Managed` so that they both have the same value.
/// Extra memory will be allocated if the receiver does not have enough capacity.
pub fn copy(self: *Managed, other: Const) !void {
if (self.limbs.ptr == other.limbs.ptr) return;
try self.ensureCapacity(other.limbs.len);
mem.copy(Limb, self.limbs[0..], other.limbs[0..other.limbs.len]);
self.setMetadata(other.positive, other.limbs.len);
}
/// Efficiently swap a `Managed` with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Managed, other: *Managed) void {
mem.swap(Managed, self, other);
}
/// Debugging tool: prints the state to stderr.
pub fn dump(self: Managed) void {
for (self.limbs[0..self.len()]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("capacity={} positive={}\n", .{ self.limbs.len, self.isPositive() });
}
/// Negate the sign.
pub fn negate(self: *Managed) void {
self.metadata ^= sign_bit;
}
/// Make positive.
pub fn abs(self: *Managed) void {
self.metadata &= ~sign_bit;
}
pub fn isOdd(self: Managed) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Managed) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Managed) usize {
return self.toConst().bitCountAbs();
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Managed) usize {
return self.toConst().bitCountTwosComp();
}
pub fn fitsInTwosComp(self: Managed, signedness: Signedness, bit_count: usize) bool {
return self.toConst().fitsInTwosComp(signedness, bit_count);
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Managed, comptime T: type) bool {
return self.toConst().fits(T);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
pub fn sizeInBaseUpperBound(self: Managed, base: usize) usize {
return self.toConst().sizeInBaseUpperBound(base);
}
/// Sets an Managed to value. Value must be an primitive integer type.
pub fn set(self: *Managed, value: anytype) Allocator.Error!void {
try self.ensureCapacity(calcLimbLen(value));
var m = self.toMutable();
m.set(value);
self.setMetadata(m.positive, m.len);
}
pub const ConvertError = Const.ConvertError;
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Managed, comptime T: type) ConvertError!T {
return self.toConst().to(T);
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Returns an error if memory could not be allocated or `value` has invalid digits for the
/// requested base.
///
/// self's allocator is used for temporary storage to boost multiplication performance.
pub fn setString(self: *Managed, base: u8, value: []const u8) !void {
if (base < 2 or base > 16) return error.InvalidBase;
try self.ensureCapacity(calcSetStringLimbCount(base, value.len));
const limbs_buffer = try self.allocator.alloc(Limb, calcSetStringLimbsBufferLen(base, value.len));
defer self.allocator.free(limbs_buffer);
var m = self.toMutable();
try m.setString(base, value, limbs_buffer, self.allocator);
self.setMetadata(m.positive, m.len);
}
/// Set self to either bound of a 2s-complement integer.
/// Note: The result is still sign-magnitude, not twos complement! In order to convert the
/// result to twos complement, it is sufficient to take the absolute value.
pub fn setTwosCompIntLimit(
r: *Managed,
limit: TwosCompIntLimit,
signedness: Signedness,
bit_count: usize,
) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.setTwosCompIntLimit(limit, signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// Converts self to a string in the requested base. Memory is allocated from the provided
/// allocator and not the one present in self.
pub fn toString(self: Managed, allocator: Allocator, base: u8, case: std.fmt.Case) ![]u8 {
if (base < 2 or base > 16) return error.InvalidBase;
return self.toConst().toStringAlloc(allocator, base, case);
}
/// To allow `std.fmt.format` to work with `Managed`.
/// If the integer is larger than `pow(2, 64 * @sizeOf(usize) * 8), this function will fail
/// to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Managed,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
return self.toConst().format(fmt, options, out_stream);
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if |a| < |b|, |a| ==
/// |b| or |a| > |b| respectively.
pub fn orderAbs(a: Managed, b: Managed) math.Order {
return a.toConst().orderAbs(b.toConst());
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if a < b, a == b or a
/// > b respectively.
pub fn order(a: Managed, b: Managed) math.Order {
return a.toConst().order(b.toConst());
}
/// Returns true if a == 0.
pub fn eqZero(a: Managed) bool {
return a.toConst().eqZero();
}
/// Returns true if |a| == |b|.
pub fn eqAbs(a: Managed, b: Managed) bool {
return a.toConst().eqAbs(b.toConst());
}
/// Returns true if a == b.
pub fn eq(a: Managed, b: Managed) bool {
return a.toConst().eq(b.toConst());
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
pub fn normalize(r: *Managed, length: usize) void {
assert(length > 0);
assert(length <= r.limbs.len);
var j = length;
while (j > 0) : (j -= 1) {
if (r.limbs[j - 1] != 0) {
break;
}
}
// Handle zero
r.setLen(if (j != 0) j else 1);
}
/// r = a + scalar
///
/// r and a may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addScalar(r: *Managed, a: *const Managed, scalar: anytype) Allocator.Error!void {
try r.ensureAddScalarCapacity(a.toConst(), scalar);
var m = r.toMutable();
m.addScalar(a.toConst(), scalar);
r.setMetadata(m.positive, m.len);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn add(r: *Managed, a: *const Managed, b: *const Managed) Allocator.Error!void {
try r.ensureAddCapacity(a.toConst(), b.toConst());
var m = r.toMutable();
m.add(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a + b with 2s-complement wrapping semantics. Returns whether any overflow occured.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addWrap(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!bool {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
const wrapped = m.addWrap(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
return wrapped;
}
/// r = a + b with 2s-complement saturating semantics.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addSat(r: *Managed, a: *const Managed, b: *const Managed, signedness: Signedness, bit_count: usize) Allocator.Error!void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.addSat(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn sub(r: *Managed, a: *const Managed, b: *const Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()) + 1);
var m = r.toMutable();
m.sub(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a - b with 2s-complement wrapping semantics. Returns whether any overflow occured.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn subWrap(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!bool {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
const wrapped = m.subWrap(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
return wrapped;
}
/// r = a - b with 2s-complement saturating semantics.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn subSat(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.subSat(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// rma = a * b
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mul(rma: *Managed, a: *const Managed, b: *const Managed) !void {
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
try rma.ensureMulCapacity(a.toConst(), b.toConst());
var m = rma.toMutable();
if (alias_count == 0) {
m.mulNoAlias(a.toConst(), b.toConst(), rma.allocator);
} else {
const limb_count = calcMulLimbsBufferLen(a.len(), b.len(), alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mul(a.toConst(), b.toConst(), limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mulWrap(
rma: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) !void {
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
try rma.ensureTwosCompCapacity(bit_count);
var m = rma.toMutable();
if (alias_count == 0) {
m.mulWrapNoAlias(a.toConst(), b.toConst(), signedness, bit_count, rma.allocator);
} else {
const limb_count = calcMulWrapLimbsBufferLen(bit_count, a.len(), b.len(), alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mulWrap(a.toConst(), b.toConst(), signedness, bit_count, limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
pub fn ensureTwosCompCapacity(r: *Managed, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
}
pub fn ensureAddScalarCapacity(r: *Managed, a: Const, scalar: anytype) !void {
try r.ensureCapacity(math.max(a.limbs.len, calcLimbLen(scalar)) + 1);
}
pub fn ensureAddCapacity(r: *Managed, a: Const, b: Const) !void {
try r.ensureCapacity(math.max(a.limbs.len, b.limbs.len) + 1);
}
pub fn ensureMulCapacity(rma: *Managed, a: Const, b: Const) !void {
try rma.ensureCapacity(a.limbs.len + b.limbs.len + 1);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
///
/// Returns an error if memory could not be allocated.
pub fn divFloor(q: *Managed, r: *Managed, a: *const Managed, b: *const Managed) !void {
try q.ensureCapacity(a.len());
try r.ensureCapacity(b.len());
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.len(), b.len()));
defer q.allocator.free(limbs_buffer);
mq.divFloor(&mr, a.toConst(), b.toConst(), limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
///
/// Returns an error if memory could not be allocated.
pub fn divTrunc(q: *Managed, r: *Managed, a: *const Managed, b: *const Managed) !void {
try q.ensureCapacity(a.len());
try r.ensureCapacity(b.len());
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.len(), b.len()));
defer q.allocator.free(limbs_buffer);
mq.divTrunc(&mr, a.toConst(), b.toConst(), limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// r = a << shift, in other words, r = a * 2^shift
/// r and a may alias.
pub fn shiftLeft(r: *Managed, a: *const Managed, shift: usize) !void {
try r.ensureCapacity(a.len() + (shift / limb_bits) + 1);
var m = r.toMutable();
m.shiftLeft(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a <<| shift with 2s-complement saturating semantics.
/// r and a may alias.
pub fn shiftLeftSat(r: *Managed, a: *const Managed, shift: usize, signedness: Signedness, bit_count: usize) !void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.shiftLeftSat(a.toConst(), shift, signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a >> shift
/// r and a may alias.
pub fn shiftRight(r: *Managed, a: *const Managed, shift: usize) !void {
if (a.len() <= shift / limb_bits) {
r.metadata = 1;
r.limbs[0] = 0;
return;
}
try r.ensureCapacity(a.len() - (shift / limb_bits));
var m = r.toMutable();
m.shiftRight(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = ~a under 2s-complement wrapping semantics.
/// r and a may alias.
pub fn bitNotWrap(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.bitNotWrap(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a | b
///
/// a and b are zero-extended to the longer of a or b.
pub fn bitOr(r: *Managed, a: *const Managed, b: *const Managed) !void {
try r.ensureCapacity(math.max(a.len(), b.len()));
var m = r.toMutable();
m.bitOr(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a & b
pub fn bitAnd(r: *Managed, a: *const Managed, b: *const Managed) !void {
const cap = if (a.isPositive() or b.isPositive())
math.min(a.len(), b.len())
else
math.max(a.len(), b.len()) + 1;
try r.ensureCapacity(cap);
var m = r.toMutable();
m.bitAnd(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a ^ b
pub fn bitXor(r: *Managed, a: *const Managed, b: *const Managed) !void {
var cap = math.max(a.len(), b.len()) + @boolToInt(a.isPositive() != b.isPositive());
try r.ensureCapacity(cap);
var m = r.toMutable();
m.bitXor(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// rma may alias x or y.
/// x and y may alias each other.
///
/// rma's allocator is used for temporary storage to boost multiplication performance.
pub fn gcd(rma: *Managed, x: *const Managed, y: *const Managed) !void {
try rma.ensureCapacity(math.min(x.len(), y.len()));
var m = rma.toMutable();
var limbs_buffer = std.ArrayList(Limb).init(rma.allocator);
defer limbs_buffer.deinit();
try m.gcd(x.toConst(), y.toConst(), &limbs_buffer);
rma.setMetadata(m.positive, m.len);
}
/// r = a * a
pub fn sqr(rma: *Managed, a: *const Managed) !void {
const needed_limbs = 2 * a.len() + 1;
if (rma.limbs.ptr == a.limbs.ptr) {
var m = try Managed.initCapacity(rma.allocator, needed_limbs);
errdefer m.deinit();
var m_mut = m.toMutable();
m_mut.sqrNoAlias(a.toConst(), rma.allocator);
m.setMetadata(m_mut.positive, m_mut.len);
rma.deinit();
rma.swap(&m);
} else {
try rma.ensureCapacity(needed_limbs);
var rma_mut = rma.toMutable();
rma_mut.sqrNoAlias(a.toConst(), rma.allocator);
rma.setMetadata(rma_mut.positive, rma_mut.len);
}
}
pub fn pow(rma: *Managed, a: *const Managed, b: u32) !void {
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
const limbs_buffer = try rma.allocator.alloc(Limb, needed_limbs);
defer rma.allocator.free(limbs_buffer);
if (rma.limbs.ptr == a.limbs.ptr) {
var m = try Managed.initCapacity(rma.allocator, needed_limbs);
errdefer m.deinit();
var m_mut = m.toMutable();
try m_mut.pow(a.toConst(), b, limbs_buffer);
m.setMetadata(m_mut.positive, m_mut.len);
rma.deinit();
rma.swap(&m);
} else {
try rma.ensureCapacity(needed_limbs);
var rma_mut = rma.toMutable();
try rma_mut.pow(a.toConst(), b, limbs_buffer);
rma.setMetadata(rma_mut.positive, rma_mut.len);
}
}
/// r = truncate(Int(signedness, bit_count), a)
pub fn truncate(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.truncate(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = saturate(Int(signedness, bit_count), a)
pub fn saturate(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.saturate(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = @popCount(a) with 2s-complement semantics.
/// r and a may be aliases.
pub fn popCount(r: *Managed, a: *const Managed, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.popCount(a.toConst(), bit_count);
r.setMetadata(m.positive, m.len);
}
};
/// Different operators which can be used in accumulation style functions
/// (llmulacc, llmulaccKaratsuba, llmulaccLong, llmulLimb). In all these functions,
/// a computed value is accumulated with an existing result.
const AccOp = enum {
/// The computed value is added to the result.
add,
/// The computed value is subtracted from the result.
sub,
};
/// Knuth 4.3.1, Algorithm M.
///
/// r = r (op) a * b
/// r MUST NOT alias any of a or b.
///
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulacc(comptime op: AccOp, opt_allocator: ?Allocator, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(r.len >= b.len);
// Order greatest first.
var x = a;
var y = b;
if (a.len < b.len) {
x = b;
y = a;
}
k_mul: {
if (y.len > 48) {
if (opt_allocator) |allocator| {
llmulaccKaratsuba(op, allocator, r, x, y) catch |err| switch (err) {
error.OutOfMemory => break :k_mul, // handled below
};
return;
}
}
}
llmulaccLong(op, r, x, y);
}
/// Knuth 4.3.1, Algorithm M.
///
/// r = r (op) a * b
/// r MUST NOT alias any of a or b.
///
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulaccKaratsuba(
comptime op: AccOp,
allocator: Allocator,
r: []Limb,
a: []const Limb,
b: []const Limb,
) error{OutOfMemory}!void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
// Classical karatsuba algorithm:
// a = a1 * B + a0
// b = b1 * B + b0
// Where a0, b0 < B
//
// We then have:
// ab = a * b
// = (a1 * B + a0) * (b1 * B + b0)
// = a1 * b1 * B * B + a1 * B * b0 + a0 * b1 * B + a0 * b0
// = a1 * b1 * B * B + (a1 * b0 + a0 * b1) * B + a0 * b0
//
// Note that:
// a1 * b0 + a0 * b1
// = (a1 + a0)(b1 + b0) - a1 * b1 - a0 * b0
// = (a0 - a1)(b1 - b0) + a1 * b1 + a0 * b0
//
// This yields:
// ab = p2 * B^2 + (p0 + p1 + p2) * B + p0
//
// Where:
// p0 = a0 * b0
// p1 = (a0 - a1)(b1 - b0)
// p2 = a1 * b1
//
// Note, (a0 - a1) and (b1 - b0) produce values -B < x < B, and so we need to mind the sign here.
// We also have:
// 0 <= p0 <= 2B
// -2B <= p1 <= 2B
//
// Note, when B is a multiple of the limb size, multiplies by B amount to shifts or
// slices of a limbs array.
//
// This function computes the result of the multiplication modulo r.len. This means:
// - p2 and p1 only need to be computed modulo r.len - B.
// - In the case of p2, p2 * B^2 needs to be added modulo r.len - 2 * B.
const split = b.len / 2; // B
const limbs_after_split = r.len - split; // Limbs to compute for p1 and p2.
const limbs_after_split2 = r.len - split * 2; // Limbs to add for p2 * B^2.
// For a0 and b0 we need the full range.
const a0 = a[0..llnormalize(a[0..split])];
const b0 = b[0..llnormalize(b[0..split])];
// For a1 and b1 we only need `limbs_after_split` limbs.
const a1 = blk: {
var a1 = a[split..];
a1.len = math.min(llnormalize(a1), limbs_after_split);
break :blk a1;
};
const b1 = blk: {
var b1 = b[split..];
b1.len = math.min(llnormalize(b1), limbs_after_split);
break :blk b1;
};
// Note that the above slices relative to `split` work because we have a.len > b.len.
// We need some temporary memory to store intermediate results.
// Note, we can reduce the amount of temporaries we need by reordering the computation here:
// ab = p2 * B^2 + (p0 + p1 + p2) * B + p0
// = p2 * B^2 + (p0 * B + p1 * B + p2 * B) + p0
// = (p2 * B^2 + p2 * B) + (p0 * B + p0) + p1 * B
// Allocate at least enough memory to be able to multiply the upper two segments of a and b, assuming
// no overflow.
const tmp = try allocator.alloc(Limb, a.len - split + b.len - split);
defer allocator.free(tmp);
// Compute p2.
// Note, we don't need to compute all of p2, just enough limbs to satisfy r.
const p2_limbs = math.min(limbs_after_split, a1.len + b1.len);
mem.set(Limb, tmp[0..p2_limbs], 0);
llmulacc(.add, allocator, tmp[0..p2_limbs], a1[0..math.min(a1.len, p2_limbs)], b1[0..math.min(b1.len, p2_limbs)]);
const p2 = tmp[0..llnormalize(tmp[0..p2_limbs])];
// Add p2 * B to the result.
llaccum(op, r[split..], p2);
// Add p2 * B^2 to the result if required.
if (limbs_after_split2 > 0) {
llaccum(op, r[split * 2 ..], p2[0..math.min(p2.len, limbs_after_split2)]);
}
// Compute p0.
// Since a0.len, b0.len <= split and r.len >= split * 2, the full width of p0 needs to be computed.
const p0_limbs = a0.len + b0.len;
mem.set(Limb, tmp[0..p0_limbs], 0);
llmulacc(.add, allocator, tmp[0..p0_limbs], a0, b0);
const p0 = tmp[0..llnormalize(tmp[0..p0_limbs])];
// Add p0 to the result.
llaccum(op, r, p0);
// Add p0 * B to the result. In this case, we may not need all of it.
llaccum(op, r[split..], p0[0..math.min(limbs_after_split, p0.len)]);
// Finally, compute and add p1.
// From now on we only need `limbs_after_split` limbs for a0 and b0, since the result of the
// following computation will be added * B.
const a0x = a0[0..std.math.min(a0.len, limbs_after_split)];
const b0x = b0[0..std.math.min(b0.len, limbs_after_split)];
const j0_sign = llcmp(a0x, a1);
const j1_sign = llcmp(b1, b0x);
if (j0_sign * j1_sign == 0) {
// p1 is zero, we don't need to do any computation at all.
return;
}
mem.set(Limb, tmp, 0);
// p1 is nonzero, so compute the intermediary terms j0 = a0 - a1 and j1 = b1 - b0.
// Note that in this case, we again need some storage for intermediary results
// j0 and j1. Since we have tmp.len >= 2B, we can store both
// intermediaries in the already allocated array.
const j0 = tmp[0 .. a.len - split];
const j1 = tmp[a.len - split ..];
// Ensure that no subtraction overflows.
if (j0_sign == 1) {
// a0 > a1.
_ = llsubcarry(j0, a0x, a1);
} else {
// a0 < a1.
_ = llsubcarry(j0, a1, a0x);
}
if (j1_sign == 1) {
// b1 > b0.
_ = llsubcarry(j1, b1, b0x);
} else {
// b1 > b0.
_ = llsubcarry(j1, b0x, b1);
}
if (j0_sign * j1_sign == 1) {
// If j0 and j1 are both positive, we now have:
// p1 = j0 * j1
// If j0 and j1 are both negative, we now have:
// p1 = -j0 * -j1 = j0 * j1
// In this case we can add p1 to the result using llmulacc.
llmulacc(op, allocator, r[split..], j0[0..llnormalize(j0)], j1[0..llnormalize(j1)]);
} else {
// In this case either j0 or j1 is negative, an we have:
// p1 = -(j0 * j1)
// Now we need to subtract instead of accumulate.
const inverted_op = if (op == .add) .sub else .add;
llmulacc(inverted_op, allocator, r[split..], j0[0..llnormalize(j0)], j1[0..llnormalize(j1)]);
}
}
/// r = r (op) a.
/// The result is computed modulo `r.len`.
fn llaccum(comptime op: AccOp, r: []Limb, a: []const Limb) void {
@setRuntimeSafety(debug_safety);
if (op == .sub) {
_ = llsubcarry(r, r, a);
return;
}
assert(r.len != 0 and a.len != 0);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < a.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, r[i], a[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while ((carry != 0) and i < r.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
}
}
/// Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
pub fn llcmp(a: []const Limb, b: []const Limb) i8 {
@setRuntimeSafety(debug_safety);
const a_len = llnormalize(a);
const b_len = llnormalize(b);
if (a_len < b_len) {
return -1;
}
if (a_len > b_len) {
return 1;
}
var i: usize = a_len - 1;
while (i != 0) : (i -= 1) {
if (a[i] != b[i]) {
break;
}
}
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
return 0;
}
}
/// r = r (op) y * xi
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulaccLong(comptime op: AccOp, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
_ = llmulLimb(op, r[i..], a, b[i]);
}
}
/// r = r (op) y * xi
/// The result is computed modulo `r.len`.
/// Returns whether the operation overflowed.
fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) bool {
@setRuntimeSafety(debug_safety);
if (xi == 0) {
return false;
}
const split = std.math.min(y.len, acc.len);
var a_lo = acc[0..split];
var a_hi = acc[split..];
switch (op) {
.add => {
var carry: Limb = 0;
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = addMulLimbWithCarry(a_lo[j], y[j], xi, &carry);
}
j = 0;
while ((carry != 0) and (j < a_hi.len)) : (j += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a_hi[j], carry, &a_hi[j]));
}
return carry != 0;
},
.sub => {
var borrow: Limb = 0;
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = subMulLimbWithBorrow(a_lo[j], y[j], xi, &borrow);
}
j = 0;
while ((borrow != 0) and (j < a_hi.len)) : (j += 1) {
borrow = @boolToInt(@subWithOverflow(Limb, a_hi[j], borrow, &a_hi[j]));
}
return borrow != 0;
},
}
}
/// returns the min length the limb could be.
fn llnormalize(a: []const Limb) usize {
@setRuntimeSafety(debug_safety);
var j = a.len;
while (j > 0) : (j -= 1) {
if (a[j - 1] != 0) {
break;
}
}
// Handle zero
return if (j != 0) j else 1;
}
/// Knuth 4.3.1, Algorithm S.
fn llsubcarry(r: []Limb, a: []const Limb, b: []const Limb) Limb {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len);
var i: usize = 0;
var borrow: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@subWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@subWithOverflow(Limb, r[i], borrow, &r[i]));
borrow = c;
}
while (i < a.len) : (i += 1) {
borrow = @boolToInt(@subWithOverflow(Limb, a[i], borrow, &r[i]));
}
return borrow;
}
fn llsub(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > b.len or (a.len == b.len and a[a.len - 1] >= b[b.len - 1]));
assert(llsubcarry(r, a, b) == 0);
}
/// Knuth 4.3.1, Algorithm A.
fn lladdcarry(r: []Limb, a: []const Limb, b: []const Limb) Limb {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < b.len) : (i += 1) {
var c: Limb = 0;
c += @boolToInt(@addWithOverflow(Limb, a[i], b[i], &r[i]));
c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i]));
carry = c;
}
while (i < a.len) : (i += 1) {
carry = @boolToInt(@addWithOverflow(Limb, a[i], carry, &r[i]));
}
return carry;
}
fn lladd(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len + 1);
r[a.len] = lladdcarry(r, a, b);
}
/// Knuth 4.3.1, Exercise 16.
fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a) |_, ri| {
const i = a.len - ri - 1;
const pdiv = ((@as(DoubleLimb, rem.*) << limb_bits) | a[i]);
if (pdiv == 0) {
quo[i] = 0;
rem.* = 0;
} else if (pdiv < b) {
quo[i] = 0;
rem.* = @truncate(Limb, pdiv);
} else if (pdiv == b) {
quo[i] = 1;
rem.* = 0;
} else {
quo[i] = @truncate(Limb, @divTrunc(pdiv, b));
rem.* = @truncate(Limb, pdiv - (quo[i] *% b));
}
}
}
fn lldiv0p5(quo: []Limb, rem: *Limb, a: []const Limb, b: HalfLimb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a) |_, ri| {
const i = a.len - ri - 1;
const ai_high = a[i] >> half_limb_bits;
const ai_low = a[i] & ((1 << half_limb_bits) - 1);
// Split the division into two divisions acting on half a limb each. Carry remainder.
const ai_high_with_carry = (rem.* << half_limb_bits) | ai_high;
const ai_high_quo = ai_high_with_carry / b;
rem.* = ai_high_with_carry % b;
const ai_low_with_carry = (rem.* << half_limb_bits) | ai_low;
const ai_low_quo = ai_low_with_carry / b;
rem.* = ai_low_with_carry % b;
quo[i] = (ai_high_quo << half_limb_bits) | ai_low_quo;
}
}
fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
const interior_limb_shift = @truncate(Log2Limb, shift);
// We only need the extra limb if the shift of the last element overflows.
// This is useful for the implementation of `shiftLeftSat`.
if (a[a.len - 1] << interior_limb_shift >> interior_limb_shift != a[a.len - 1]) {
assert(r.len >= a.len + (shift / limb_bits) + 1);
} else {
assert(r.len >= a.len + (shift / limb_bits));
}
const limb_shift = shift / limb_bits + 1;
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i + limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | @call(.{ .modifier = .always_inline }, math.shr, .{
Limb,
src_digit,
limb_bits - @intCast(Limb, interior_limb_shift),
});
carry = (src_digit << interior_limb_shift);
}
r[limb_shift - 1] = carry;
mem.set(Limb, r[0 .. limb_shift - 1], 0);
}
fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
assert(r.len >= a.len - (shift / limb_bits));
const limb_shift = shift / limb_bits;
const interior_limb_shift = @truncate(Log2Limb, shift);
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len - limb_shift) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i - limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | (src_digit >> interior_limb_shift);
carry = @call(.{ .modifier = .always_inline }, math.shl, .{
Limb,
src_digit,
limb_bits - @intCast(Limb, interior_limb_shift),
});
}
}
// r = ~r
fn llnot(r: []Limb) void {
@setRuntimeSafety(debug_safety);
for (r) |*elem| {
elem.* = ~elem.*;
}
}
// r = a | b with 2s complement semantics.
// r may alias.
// a and b must not be 0.
// Returns `true` when the result is positive.
// When b is positive, r requires at least `a.len` limbs of storage.
// When b is negative, r requires at least `b.len` limbs of storage.
fn llsignedor(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
if (a_positive and b_positive) {
// Trivial case, result is positive.
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] | b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
return true;
} else if (!a_positive and b_positive) {
// Result is negative.
// r = (--a) | b
// = ~(-a - 1) | b
// = ~(-a - 1) | ~~b
// = ~((-a - 1) & ~b)
// = -(((-a - 1) & ~b) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &a_limb));
r[i] = a_limb & ~b[i];
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
// In order for r_carry to be nonzero at this point, ~b[i] would need to be
// all ones, which would require b[i] to be zero. This cannot be when
// b is normalized, so there cannot be a carry here.
// Also, x & ~b can only clear bits, so (x & ~b) <= x, meaning (-a - 1) + 1 never overflows.
assert(r_carry == 0);
// With b = 0, we get (-a - 1) & ~0 = -a - 1.
// Note, if a_borrow is zero we do not need to compute anything for
// the higher limbs so we can early return here.
while (i < a.len and a_borrow == 1) : (i += 1) {
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &r[i]));
}
assert(a_borrow == 0); // a was 0.
return false;
} else if (a_positive and !b_positive) {
// Result is negative.
// r = a | (--b)
// = a | ~(-b - 1)
// = ~~a | ~(-b - 1)
// = ~(~a & (-b - 1))
// = -((~a & (-b - 1)) + 1)
var i: usize = 0;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
var b_limb: Limb = undefined;
b_borrow = @boolToInt(@subWithOverflow(Limb, b[i], b_borrow, &b_limb));
r[i] = ~a[i] & b_limb;
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// x & ~a can only clear bits, so (x & ~a) <= x, meaning (-b - 1) + 1 never overflows.
assert(r_carry == 0);
// With b = 0 and b_borrow = 0, we get ~a & (-0 - 0) = ~a & 0 = 0.
// Omit setting the upper bytes, just deal with those when calling llsignedor.
return false;
} else {
// Result is negative.
// r = (--a) | (--b)
// = ~(-a - 1) | ~(-b - 1)
// = ~((-a - 1) & (-b - 1))
// = -(~(~((-a - 1) & (-b - 1))) + 1)
// = -((-a - 1) & (-b - 1) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &a_limb));
var b_limb: Limb = undefined;
b_borrow = @boolToInt(@subWithOverflow(Limb, b[i], b_borrow, &b_limb));
r[i] = a_limb & b_limb;
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// Can never overflow because in order for b_limb to be maxInt(Limb),
// b_borrow would need to equal 1.
// x & y can only clear bits, meaning x & y <= x and x & y <= y. This implies that
// for x = a - 1 and y = b - 1, the +1 term would never cause an overflow.
assert(r_carry == 0);
// With b = 0 and b_borrow = 0 we get (-a - 1) & (-0 - 0) = (-a - 1) & 0 = 0.
// Omit setting the upper bytes, just deal with those when calling llsignedor.
return false;
}
}
// r = a & b with 2s complement semantics.
// r may alias.
// a and b must not be 0.
// Returns `true` when the result is positive.
// When either or both of a and b are positive, r requires at least `b.len` limbs of storage.
// When both a and b are negative, r requires at least `a.limbs.len + 1` limbs of storage.
fn llsignedand(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= if (!a_positive and !b_positive) a.len + 1 else b.len);
if (a_positive and b_positive) {
// Trivial case, result is positive.
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] & b[i];
}
// With b = 0 we have a & 0 = 0, so the upper bytes are zero.
// Omit setting them here and simply discard them whenever
// llsignedand is called.
return true;
} else if (!a_positive and b_positive) {
// Result is positive.
// r = (--a) & b
// = ~(-a - 1) & b
var i: usize = 0;
var a_borrow: u1 = 1;
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &a_limb));
r[i] = ~a_limb & b[i];
}
// With b = 0 we have ~(a - 1) & 0 = 0, so the upper bytes are zero.
// Omit setting them here and simply discard them whenever
// llsignedand is called.
return true;
} else if (a_positive and !b_positive) {
// Result is positive.
// r = a & (--b)
// = a & ~(-b - 1)
var i: usize = 0;
var b_borrow: u1 = 1;
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
b_borrow = @boolToInt(@subWithOverflow(Limb, b[i], b_borrow, &a_limb));
r[i] = a[i] & ~a_limb;
}
assert(b_borrow == 0); // b was 0
// With b = 0 and b_borrow = 0 we have a & ~(-0 - 0) = a & 0 = 0, so
// the upper bytes are zero. Omit setting them here and simply discard
// them whenever llsignedand is called.
return true;
} else {
// Result is negative.
// r = (--a) & (--b)
// = ~(-a - 1) & ~(-b - 1)
// = ~((-a - 1) | (-b - 1))
// = -(((-a - 1) | (-b - 1)) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &a_limb));
var b_limb: Limb = undefined;
b_borrow = @boolToInt(@subWithOverflow(Limb, b[i], b_borrow, &b_limb));
r[i] = a_limb | b_limb;
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// With b = 0 and b_borrow = 0 we get (-a - 1) | (-0 - 0) = (-a - 1) | 0 = -a - 1.
while (i < a.len) : (i += 1) {
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &r[i]));
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
assert(a_borrow == 0); // a was 0.
// The final addition can overflow here, so we need to keep that in mind.
r[i] = r_carry;
return false;
}
}
// r = a ^ b with 2s complement semantics.
// r may alias.
// a and b must not be -0.
// Returns `true` when the result is positive.
// If the sign of a and b is equal, then r requires at least `max(a.len, b.len)` limbs are required.
// Otherwise, r requires at least `max(a.len, b.len) + 1` limbs.
fn llsignedxor(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(r.len >= a.len);
assert(a.len >= b.len);
// If a and b are positive, the result is positive and r = a ^ b.
// If a negative, b positive, result is negative and we have
// r = --(--a ^ b)
// = --(~(-a - 1) ^ b)
// = -(~(~(-a - 1) ^ b) + 1)
// = -(((-a - 1) ^ b) + 1)
// Same if a is positive and b is negative, sides switched.
// If both a and b are negative, the result is positive and we have
// r = (--a) ^ (--b)
// = ~(-a - 1) ^ ~(-b - 1)
// = (-a - 1) ^ (-b - 1)
// These operations can be made more generic as follows:
// - If a is negative, subtract 1 from |a| before the xor.
// - If b is negative, subtract 1 from |b| before the xor.
// - if the result is supposed to be negative, add 1.
var i: usize = 0;
var a_borrow = @boolToInt(!a_positive);
var b_borrow = @boolToInt(!b_positive);
var r_carry = @boolToInt(a_positive != b_positive);
while (i < b.len) : (i += 1) {
var a_limb: Limb = undefined;
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &a_limb));
var b_limb: Limb = undefined;
b_borrow = @boolToInt(@subWithOverflow(Limb, b[i], b_borrow, &b_limb));
r[i] = a_limb ^ b_limb;
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
while (i < a.len) : (i += 1) {
a_borrow = @boolToInt(@subWithOverflow(Limb, a[i], a_borrow, &r[i]));
r_carry = @boolToInt(@addWithOverflow(Limb, r[i], r_carry, &r[i]));
}
// If both inputs don't share the same sign, an extra limb is required.
if (a_positive != b_positive) {
r[i] = r_carry;
} else {
assert(r_carry == 0);
}
assert(a_borrow == 0);
assert(b_borrow == 0);
return a_positive == b_positive;
}
/// r MUST NOT alias x.
fn llsquareBasecase(r: []Limb, x: []const Limb) void {
@setRuntimeSafety(debug_safety);
const x_norm = x;
assert(r.len >= 2 * x_norm.len + 1);
// Compute the square of a N-limb bigint with only (N^2 + N)/2
// multiplications by exploting the symmetry of the coefficients around the
// diagonal:
//
// a b c *
// a b c =
// -------------------
// ca cb cc +
// ba bb bc +
// aa ab ac
//
// Note that:
// - Each mixed-product term appears twice for each column,
// - Squares are always in the 2k (0 <= k < N) column
for (x_norm) |v, i| {
// Accumulate all the x[i]*x[j] (with x!=j) products
const overflow = llmulLimb(.add, r[2 * i + 1 ..], x_norm[i + 1 ..], v);
assert(!overflow);
}
// Each product appears twice, multiply by 2
llshl(r, r[0 .. 2 * x_norm.len], 1);
for (x_norm) |v, i| {
// Compute and add the squares
const overflow = llmulLimb(.add, r[2 * i ..], x[i .. i + 1], v);
assert(!overflow);
}
}
/// Knuth 4.6.3
fn llpow(r: []Limb, a: []const Limb, b: u32, tmp_limbs: []Limb) void {
var tmp1: []Limb = undefined;
var tmp2: []Limb = undefined;
// Multiplication requires no aliasing between the operand and the result
// variable, use the output limbs and another temporary set to overcome this
// limitation.
// The initial assignment makes the result end in `r` so an extra memory
// copy is saved, each 1 flips the index twice so it's only the zeros that
// matter.
const b_leading_zeros = @clz(b);
const exp_zeros = @popCount(~b) - b_leading_zeros;
if (exp_zeros & 1 != 0) {
tmp1 = tmp_limbs;
tmp2 = r;
} else {
tmp1 = r;
tmp2 = tmp_limbs;
}
mem.copy(Limb, tmp1, a);
mem.set(Limb, tmp1[a.len..], 0);
// Scan the exponent as a binary number, from left to right, dropping the
// most significant bit set.
// Square the result if the current bit is zero, square and multiply by a if
// it is one.
var exp_bits = 32 - 1 - b_leading_zeros;
var exp = b << @intCast(u5, 1 + b_leading_zeros);
var i: usize = 0;
while (i < exp_bits) : (i += 1) {
// Square
mem.set(Limb, tmp2, 0);
llsquareBasecase(tmp2, tmp1[0..llnormalize(tmp1)]);
mem.swap([]Limb, &tmp1, &tmp2);
// Multiply by a
if (@shlWithOverflow(u32, exp, 1, &exp)) {
mem.set(Limb, tmp2, 0);
llmulacc(.add, null, tmp2, tmp1[0..llnormalize(tmp1)], a);
mem.swap([]Limb, &tmp1, &tmp2);
}
}
}
// Storage must live for the lifetime of the returned value
fn fixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Mutable {
assert(storage.len >= 2);
const A_is_positive = A >= 0;
const Au = @intCast(DoubleLimb, if (A < 0) -A else A);
storage[0] = @truncate(Limb, Au);
storage[1] = @truncate(Limb, Au >> limb_bits);
return .{
.limbs = storage[0..2],
.positive = A_is_positive,
.len = 2,
};
}
test {
_ = @import("int_test.zig");
}
|