1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
const std = @import("../std.zig");
const debug_mode = @import("builtin").mode == .Debug;
pub const MemoryPoolError = error{OutOfMemory};
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPool(comptime Item: type) type {
return MemoryPoolAligned(Item, @alignOf(Item));
}
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPoolAligned(comptime Item: type, comptime alignment: u29) type {
if (@alignOf(Item) == alignment) {
return MemoryPoolExtra(Item, .{});
} else {
return MemoryPoolExtra(Item, .{ .alignment = alignment });
}
}
pub const Options = struct {
/// The alignment of the memory pool items. Use `null` for natural alignment.
alignment: ?u29 = null,
/// If `true`, the memory pool can allocate additional items after a initial setup.
/// If `false`, the memory pool will not allocate further after a call to `initPreheated`.
growable: bool = true,
};
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPoolExtra(comptime Item: type, comptime pool_options: Options) type {
return struct {
const Pool = @This();
/// Size of the memory pool items. This is not necessarily the same
/// as `@sizeOf(Item)` as the pool also uses the items for internal means.
pub const item_size = std.math.max(@sizeOf(Node), @sizeOf(Item));
/// Alignment of the memory pool items. This is not necessarily the same
/// as `@alignOf(Item)` as the pool also uses the items for internal means.
pub const item_alignment = std.math.max(@alignOf(Node), pool_options.alignment orelse 0);
const Node = struct {
next: ?*@This(),
};
const NodePtr = *align(item_alignment) Node;
const ItemPtr = *align(item_alignment) Item;
arena: std.heap.ArenaAllocator,
free_list: ?NodePtr = null,
/// Creates a new memory pool.
pub fn init(allocator: std.mem.Allocator) Pool {
return .{ .arena = std.heap.ArenaAllocator.init(allocator) };
}
/// Creates a new memory pool and pre-allocates `initial_size` items.
/// This allows the up to `initial_size` active allocations before a
/// `OutOfMemory` error happens when calling `create()`.
pub fn initPreheated(allocator: std.mem.Allocator, initial_size: usize) MemoryPoolError!Pool {
var pool = init(allocator);
errdefer pool.deinit();
var i: usize = 0;
while (i < initial_size) : (i += 1) {
const raw_mem = try pool.allocNew();
const free_node = @ptrCast(NodePtr, raw_mem);
free_node.* = Node{
.next = pool.free_list,
};
pool.free_list = free_node;
}
return pool;
}
/// Destroys the memory pool and frees all allocated memory.
pub fn deinit(pool: *Pool) void {
pool.arena.deinit();
pool.* = undefined;
}
/// Resets the memory pool and destroys all allocated items.
/// This can be used to batch-destroy all objects without invalidating the memory pool.
pub fn reset(pool: *Pool) void {
// TODO: Potentially store all allocated objects in a list as well, allowing to
// just move them into the free list instead of actually releasing the memory.
const allocator = pool.arena.child_allocator;
// TODO: Replace with "pool.arena.reset()" when implemented.
pool.arena.deinit();
pool.arena = std.heap.ArenaAllocator.init(allocator);
pool.free_list = null;
}
/// Creates a new item and adds it to the memory pool.
pub fn create(pool: *Pool) !ItemPtr {
const node = if (pool.free_list) |item| blk: {
pool.free_list = item.next;
break :blk item;
} else if (pool_options.growable)
@ptrCast(NodePtr, try pool.allocNew())
else
return error.OutOfMemory;
const ptr = @ptrCast(ItemPtr, node);
ptr.* = undefined;
return ptr;
}
/// Destroys a previously created item.
/// Only pass items to `ptr` that were previously created with `create()` of the same memory pool!
pub fn destroy(pool: *Pool, ptr: ItemPtr) void {
ptr.* = undefined;
const node = @ptrCast(NodePtr, ptr);
node.* = Node{
.next = pool.free_list,
};
pool.free_list = node;
}
fn allocNew(pool: *Pool) MemoryPoolError!*align(item_alignment) [item_size]u8 {
const mem = try pool.arena.allocator().alignedAlloc(u8, item_alignment, item_size);
return mem[0..item_size]; // coerce slice to array pointer
}
};
}
test "memory pool: basic" {
var pool = MemoryPool(u32).init(std.testing.allocator);
defer pool.deinit();
const p1 = try pool.create();
const p2 = try pool.create();
const p3 = try pool.create();
// Assert uniqueness
try std.testing.expect(p1 != p2);
try std.testing.expect(p1 != p3);
try std.testing.expect(p2 != p3);
pool.destroy(p2);
const p4 = try pool.create();
// Assert memory resuse
try std.testing.expect(p2 == p4);
}
test "memory pool: preheating (success)" {
var pool = try MemoryPool(u32).initPreheated(std.testing.allocator, 4);
defer pool.deinit();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
}
test "memory pool: preheating (failure)" {
var failer = std.testing.FailingAllocator.init(std.testing.allocator, 0);
try std.testing.expectError(error.OutOfMemory, MemoryPool(u32).initPreheated(failer.allocator(), 5));
}
test "memory pool: growable" {
var pool = try MemoryPoolExtra(u32, .{ .growable = false }).initPreheated(std.testing.allocator, 4);
defer pool.deinit();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
try std.testing.expectError(error.OutOfMemory, pool.create());
}
|