1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
|
//! An allocator that is intended to be used in Debug mode.
//!
//! ## Features
//!
//! * Captures stack traces on allocation, free, and optionally resize.
//! * Double free detection, which prints all three traces (first alloc, first
//! free, second free).
//! * Leak detection, with stack traces.
//! * Never reuses memory addresses, making it easier for Zig to detect branch
//! on undefined values in case of dangling pointers. This relies on
//! the backing allocator to also not reuse addresses.
//! * Uses a minimum backing allocation size to avoid operating system errors
//! from having too many active memory mappings.
//! * When a page of memory is no longer needed, give it back to resident
//! memory as soon as possible, so that it causes page faults when used.
//! * Cross platform. Operates based on a backing allocator which makes it work
//! everywhere, even freestanding.
//! * Compile-time configuration.
//!
//! These features require the allocator to be quite slow and wasteful. For
//! example, when allocating a single byte, the efficiency is less than 1%;
//! it requires more than 100 bytes of overhead to manage the allocation for
//! one byte. The efficiency gets better with larger allocations.
//!
//! ## Basic Design
//!
//! Allocations are divided into two categories, small and large.
//!
//! Small allocations are divided into buckets based on `page_size`:
//!
//! ```
//! index obj_size
//! 0 1
//! 1 2
//! 2 4
//! 3 8
//! 4 16
//! 5 32
//! 6 64
//! 7 128
//! 8 256
//! 9 512
//! 10 1024
//! 11 2048
//! ...
//! ```
//!
//! This goes on for `small_bucket_count` indexes.
//!
//! Allocations are grouped into an object size based on max(len, alignment),
//! rounded up to the next power of two.
//!
//! The main allocator state has an array of all the "current" buckets for each
//! size class. Each slot in the array can be null, meaning the bucket for that
//! size class is not allocated. When the first object is allocated for a given
//! size class, it makes one `page_size` allocation from the backing allocator.
//! This allocation is divided into "slots" - one per allocated object, leaving
//! room for the allocation metadata (starting with `BucketHeader`), which is
//! located at the very end of the "page".
//!
//! The allocation metadata includes "used bits" - 1 bit per slot representing
//! whether the slot is used. Allocations always take the next available slot
//! from the current bucket, setting the corresponding used bit, as well as
//! incrementing `allocated_count`.
//!
//! Frees recover the allocation metadata based on the address, length, and
//! alignment, relying on the backing allocation's large alignment, combined
//! with the fact that allocations are never moved from small to large, or vice
//! versa.
//!
//! When a bucket is full, a new one is allocated, containing a pointer to the
//! previous one. This singly-linked list is iterated during leak detection.
//!
//! Resizing and remapping work the same on small allocations: if the size
//! class would not change, then the operation succeeds, and the address is
//! unchanged. Otherwise, the request is rejected.
//!
//! Large objects are allocated directly using the backing allocator. Metadata
//! is stored separately in a `std.HashMap` using the backing allocator.
//!
//! Resizing and remapping are forwarded directly to the backing allocator,
//! except where such operations would change the category from large to small.
const std = @import("std");
const builtin = @import("builtin");
const log = std.log.scoped(.gpa);
const math = std.math;
const assert = std.debug.assert;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const StackTrace = std.builtin.StackTrace;
const default_page_size: usize = switch (builtin.os.tag) {
// Makes `std.heap.PageAllocator` take the happy path.
.windows => 64 * 1024,
else => switch (builtin.cpu.arch) {
// Max alignment supported by `std.heap.WasmAllocator`.
.wasm32, .wasm64 => 64 * 1024,
// Avoids too many active mappings when `page_size_max` is low.
else => @max(std.heap.page_size_max, 128 * 1024),
},
};
const Log2USize = std.math.Log2Int(usize);
const default_sys_stack_trace_frames: usize = if (std.debug.sys_can_stack_trace) 6 else 0;
const default_stack_trace_frames: usize = switch (builtin.mode) {
.Debug => default_sys_stack_trace_frames,
else => 0,
};
pub const Config = struct {
/// Number of stack frames to capture.
stack_trace_frames: usize = default_stack_trace_frames,
/// If true, the allocator will have two fields:
/// * `total_requested_bytes` which tracks the total allocated bytes of memory requested.
/// * `requested_memory_limit` which causes allocations to return `error.OutOfMemory`
/// when the `total_requested_bytes` exceeds this limit.
/// If false, these fields will be `void`.
enable_memory_limit: bool = false,
/// Whether to enable safety checks.
safety: bool = std.debug.runtime_safety,
/// Whether the allocator may be used simultaneously from multiple threads.
thread_safe: bool = !builtin.single_threaded,
/// What type of mutex you'd like to use, for thread safety.
/// when specified, the mutex type must have the same shape as `std.Thread.Mutex` and
/// `DummyMutex`, and have no required fields. Specifying this field causes
/// the `thread_safe` field to be ignored.
///
/// when null (default):
/// * the mutex type defaults to `std.Thread.Mutex` when thread_safe is enabled.
/// * the mutex type defaults to `DummyMutex` otherwise.
MutexType: ?type = null,
/// This is a temporary debugging trick you can use to turn segfaults into more helpful
/// logged error messages with stack trace details. The downside is that every allocation
/// will be leaked, unless used with retain_metadata!
never_unmap: bool = false,
/// This is a temporary debugging aid that retains metadata about allocations indefinitely.
/// This allows a greater range of double frees to be reported. All metadata is freed when
/// deinit is called. When used with never_unmap, deliberately leaked memory is also freed
/// during deinit. Currently should be used with never_unmap to avoid segfaults.
/// TODO https://github.com/ziglang/zig/issues/4298 will allow use without never_unmap
retain_metadata: bool = false,
/// Enables emitting info messages with the size and address of every allocation.
verbose_log: bool = false,
/// Tell whether the backing allocator returns already-zeroed memory.
backing_allocator_zeroes: bool = true,
/// When resizing an allocation, refresh the stack trace with the resize
/// callsite. Comes with a performance penalty.
resize_stack_traces: bool = false,
/// Magic value that distinguishes allocations owned by this allocator from
/// other regions of memory.
canary: usize = @truncate(0x9232a6ff85dff10f),
/// The size of allocations requested from the backing allocator for
/// subdividing into slots for small allocations.
///
/// Must be a power of two.
page_size: usize = default_page_size,
};
/// Default initialization of this struct is deprecated; use `.init` instead.
pub fn DebugAllocator(comptime config: Config) type {
return struct {
backing_allocator: Allocator = std.heap.page_allocator,
/// Tracks the active bucket, which is the one that has free slots in it.
buckets: [small_bucket_count]?*BucketHeader = [1]?*BucketHeader{null} ** small_bucket_count,
large_allocations: LargeAllocTable = .empty,
total_requested_bytes: @TypeOf(total_requested_bytes_init) = total_requested_bytes_init,
requested_memory_limit: @TypeOf(requested_memory_limit_init) = requested_memory_limit_init,
mutex: @TypeOf(mutex_init) = mutex_init,
const Self = @This();
pub const init: Self = .{};
/// These can be derived from size_class_index but the calculation is nontrivial.
const slot_counts: [small_bucket_count]SlotIndex = init: {
@setEvalBranchQuota(10000);
var result: [small_bucket_count]SlotIndex = undefined;
for (&result, 0..) |*elem, i| elem.* = calculateSlotCount(i);
break :init result;
};
comptime {
assert(math.isPowerOfTwo(page_size));
}
const page_size = config.page_size;
const page_align: mem.Alignment = .fromByteUnits(page_size);
/// Integer type for pointing to slots in a small allocation
const SlotIndex = std.meta.Int(.unsigned, math.log2(page_size) + 1);
const total_requested_bytes_init = if (config.enable_memory_limit) @as(usize, 0) else {};
const requested_memory_limit_init = if (config.enable_memory_limit) @as(usize, math.maxInt(usize)) else {};
const mutex_init = if (config.MutexType) |T|
T{}
else if (config.thread_safe)
std.Thread.Mutex{}
else
DummyMutex{};
const DummyMutex = struct {
inline fn lock(_: DummyMutex) void {}
inline fn unlock(_: DummyMutex) void {}
};
const stack_n = config.stack_trace_frames;
const one_trace_size = @sizeOf(usize) * stack_n;
const traces_per_slot = 2;
pub const Error = mem.Allocator.Error;
/// Avoids creating buckets that would only be able to store a small
/// number of slots. Value of 1 means 2 is the minimum slot count.
const minimum_slots_per_bucket_log2 = 1;
const small_bucket_count = math.log2(page_size) - minimum_slots_per_bucket_log2;
const largest_bucket_object_size = 1 << (small_bucket_count - 1);
const LargestSizeClassInt = std.math.IntFittingRange(0, largest_bucket_object_size);
const bucketCompare = struct {
fn compare(a: *BucketHeader, b: *BucketHeader) std.math.Order {
return std.math.order(@intFromPtr(a.page), @intFromPtr(b.page));
}
}.compare;
const LargeAlloc = struct {
bytes: []u8,
requested_size: if (config.enable_memory_limit) usize else void,
stack_addresses: [trace_n][stack_n]usize,
freed: if (config.retain_metadata) bool else void,
alignment: if (config.never_unmap and config.retain_metadata) mem.Alignment else void,
const trace_n = if (config.retain_metadata) traces_per_slot else 1;
fn dumpStackTrace(self: *LargeAlloc, trace_kind: TraceKind) void {
std.debug.dumpStackTrace(self.getStackTrace(trace_kind));
}
fn getStackTrace(self: *LargeAlloc, trace_kind: TraceKind) std.builtin.StackTrace {
assert(@intFromEnum(trace_kind) < trace_n);
const stack_addresses = &self.stack_addresses[@intFromEnum(trace_kind)];
var len: usize = 0;
while (len < stack_n and stack_addresses[len] != 0) {
len += 1;
}
return .{
.instruction_addresses = stack_addresses,
.index = len,
};
}
fn captureStackTrace(self: *LargeAlloc, ret_addr: usize, trace_kind: TraceKind) void {
assert(@intFromEnum(trace_kind) < trace_n);
const stack_addresses = &self.stack_addresses[@intFromEnum(trace_kind)];
collectStackTrace(ret_addr, stack_addresses);
}
};
const LargeAllocTable = std.AutoHashMapUnmanaged(usize, LargeAlloc);
/// Bucket: In memory, in order:
/// * BucketHeader
/// * bucket_used_bits: [N]usize, // 1 bit for every slot
/// -- below only exists when config.safety is true --
/// * requested_sizes: [N]LargestSizeClassInt // 1 int for every slot
/// * log2_ptr_aligns: [N]u8 // 1 byte for every slot
/// -- above only exists when config.safety is true --
/// * stack_trace_addresses: [N]usize, // traces_per_slot for every allocation
const BucketHeader = struct {
allocated_count: SlotIndex,
freed_count: SlotIndex,
prev: ?*BucketHeader,
next: ?*BucketHeader,
canary: usize = config.canary,
fn fromPage(page_addr: usize, slot_count: usize) *BucketHeader {
const unaligned = page_addr + page_size - bucketSize(slot_count);
return @ptrFromInt(unaligned & ~(@as(usize, @alignOf(BucketHeader)) - 1));
}
fn usedBits(bucket: *BucketHeader, index: usize) *usize {
const ptr: [*]u8 = @ptrCast(bucket);
const bits: [*]usize = @ptrCast(@alignCast(ptr + @sizeOf(BucketHeader)));
return &bits[index];
}
fn requestedSizes(bucket: *BucketHeader, slot_count: usize) []LargestSizeClassInt {
if (!config.safety) @compileError("requested size is only stored when safety is enabled");
const start_ptr = @as([*]u8, @ptrCast(bucket)) + bucketRequestedSizesStart(slot_count);
const sizes = @as([*]LargestSizeClassInt, @ptrCast(@alignCast(start_ptr)));
return sizes[0..slot_count];
}
fn log2PtrAligns(bucket: *BucketHeader, slot_count: usize) []mem.Alignment {
if (!config.safety) @compileError("requested size is only stored when safety is enabled");
const aligns_ptr = @as([*]u8, @ptrCast(bucket)) + bucketAlignsStart(slot_count);
return @ptrCast(aligns_ptr[0..slot_count]);
}
fn stackTracePtr(
bucket: *BucketHeader,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) *[stack_n]usize {
const start_ptr = @as([*]u8, @ptrCast(bucket)) + bucketStackFramesStart(slot_count);
const addr = start_ptr + one_trace_size * traces_per_slot * slot_index +
@intFromEnum(trace_kind) * @as(usize, one_trace_size);
return @ptrCast(@alignCast(addr));
}
fn captureStackTrace(
bucket: *BucketHeader,
ret_addr: usize,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) void {
// Initialize them to 0. When determining the count we must look
// for non zero addresses.
const stack_addresses = bucket.stackTracePtr(slot_count, slot_index, trace_kind);
collectStackTrace(ret_addr, stack_addresses);
}
};
pub fn allocator(self: *Self) Allocator {
return .{
.ptr = self,
.vtable = &.{
.alloc = alloc,
.resize = resize,
.remap = remap,
.free = free,
},
};
}
fn bucketStackTrace(
bucket: *BucketHeader,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) StackTrace {
const stack_addresses = bucket.stackTracePtr(slot_count, slot_index, trace_kind);
var len: usize = 0;
while (len < stack_n and stack_addresses[len] != 0) {
len += 1;
}
return .{
.instruction_addresses = stack_addresses,
.index = len,
};
}
fn bucketRequestedSizesStart(slot_count: usize) usize {
if (!config.safety) @compileError("requested sizes are not stored unless safety is enabled");
return mem.alignForward(
usize,
@sizeOf(BucketHeader) + usedBitsSize(slot_count),
@alignOf(LargestSizeClassInt),
);
}
fn bucketAlignsStart(slot_count: usize) usize {
if (!config.safety) @compileError("requested sizes are not stored unless safety is enabled");
return bucketRequestedSizesStart(slot_count) + (@sizeOf(LargestSizeClassInt) * slot_count);
}
fn bucketStackFramesStart(slot_count: usize) usize {
const unaligned_start = if (config.safety)
bucketAlignsStart(slot_count) + slot_count
else
@sizeOf(BucketHeader) + usedBitsSize(slot_count);
return mem.alignForward(usize, unaligned_start, @alignOf(usize));
}
fn bucketSize(slot_count: usize) usize {
return bucketStackFramesStart(slot_count) + one_trace_size * traces_per_slot * slot_count;
}
/// This is executed only at compile-time to prepopulate a lookup table.
fn calculateSlotCount(size_class_index: usize) SlotIndex {
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
var lower: usize = 1 << minimum_slots_per_bucket_log2;
var upper: usize = (page_size - bucketSize(lower)) / size_class;
while (upper > lower) {
const proposed: usize = lower + (upper - lower) / 2;
if (proposed == lower) return lower;
const slots_end = proposed * size_class;
const header_begin = mem.alignForward(usize, slots_end, @alignOf(BucketHeader));
const end = header_begin + bucketSize(proposed);
if (end > page_size) {
upper = proposed - 1;
} else {
lower = proposed;
}
}
const slots_end = lower * size_class;
const header_begin = mem.alignForward(usize, slots_end, @alignOf(BucketHeader));
const end = header_begin + bucketSize(lower);
assert(end <= page_size);
return lower;
}
fn usedBitsCount(slot_count: usize) usize {
return (slot_count + (@bitSizeOf(usize) - 1)) / @bitSizeOf(usize);
}
fn usedBitsSize(slot_count: usize) usize {
return usedBitsCount(slot_count) * @sizeOf(usize);
}
fn detectLeaksInBucket(bucket: *BucketHeader, size_class_index: usize, used_bits_count: usize) bool {
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_count = slot_counts[size_class_index];
var leaks = false;
for (0..used_bits_count) |used_bits_byte| {
const used_int = bucket.usedBits(used_bits_byte).*;
if (used_int != 0) {
for (0..@bitSizeOf(usize)) |bit_index_usize| {
const bit_index: Log2USize = @intCast(bit_index_usize);
const is_used = @as(u1, @truncate(used_int >> bit_index)) != 0;
if (is_used) {
const slot_index: SlotIndex = @intCast(used_bits_byte * @bitSizeOf(usize) + bit_index);
const stack_trace = bucketStackTrace(bucket, slot_count, slot_index, .alloc);
const page_addr = @intFromPtr(bucket) & ~(page_size - 1);
const addr = page_addr + slot_index * size_class;
log.err("memory address 0x{x} leaked: {f}", .{ addr, stack_trace });
leaks = true;
}
}
}
}
return leaks;
}
/// Emits log messages for leaks and then returns whether there were any leaks.
pub fn detectLeaks(self: *Self) bool {
var leaks = false;
for (self.buckets, 0..) |init_optional_bucket, size_class_index| {
var optional_bucket = init_optional_bucket;
const slot_count = slot_counts[size_class_index];
const used_bits_count = usedBitsCount(slot_count);
while (optional_bucket) |bucket| {
leaks = detectLeaksInBucket(bucket, size_class_index, used_bits_count) or leaks;
optional_bucket = bucket.prev;
}
}
var it = self.large_allocations.valueIterator();
while (it.next()) |large_alloc| {
if (config.retain_metadata and large_alloc.freed) continue;
const stack_trace = large_alloc.getStackTrace(.alloc);
log.err("memory address 0x{x} leaked: {f}", .{
@intFromPtr(large_alloc.bytes.ptr), stack_trace,
});
leaks = true;
}
return leaks;
}
fn freeRetainedMetadata(self: *Self) void {
comptime assert(config.retain_metadata);
if (config.never_unmap) {
// free large allocations that were intentionally leaked by never_unmap
var it = self.large_allocations.iterator();
while (it.next()) |large| {
if (large.value_ptr.freed) {
self.backing_allocator.rawFree(large.value_ptr.bytes, large.value_ptr.alignment, @returnAddress());
}
}
}
}
pub fn flushRetainedMetadata(self: *Self) void {
comptime assert(config.retain_metadata);
self.freeRetainedMetadata();
// also remove entries from large_allocations
var it = self.large_allocations.iterator();
while (it.next()) |large| {
if (large.value_ptr.freed) {
_ = self.large_allocations.remove(@intFromPtr(large.value_ptr.bytes.ptr));
}
}
}
/// Returns `std.heap.Check.leak` if there were leaks; `std.heap.Check.ok` otherwise.
pub fn deinit(self: *Self) std.heap.Check {
const leaks = if (config.safety) self.detectLeaks() else false;
if (config.retain_metadata) self.freeRetainedMetadata();
self.large_allocations.deinit(self.backing_allocator);
self.* = undefined;
return if (leaks) .leak else .ok;
}
fn collectStackTrace(first_trace_addr: usize, addr_buf: *[stack_n]usize) void {
const st = std.debug.captureCurrentStackTrace(.{ .first_address = first_trace_addr }, addr_buf);
@memset(addr_buf[@min(st.index, addr_buf.len)..], 0);
}
fn reportDoubleFree(ret_addr: usize, alloc_stack_trace: StackTrace, free_stack_trace: StackTrace) void {
var addr_buf: [stack_n]usize = undefined;
const second_free_stack_trace = std.debug.captureCurrentStackTrace(.{ .first_address = ret_addr }, &addr_buf);
log.err("Double free detected. Allocation: {f} First free: {f} Second free: {f}", .{
alloc_stack_trace, free_stack_trace, second_free_stack_trace,
});
}
/// This function assumes the object is in the large object storage regardless
/// of the parameters.
fn resizeLarge(
self: *Self,
old_mem: []u8,
alignment: mem.Alignment,
new_size: usize,
ret_addr: usize,
may_move: bool,
) ?[*]u8 {
if (config.retain_metadata and may_move) {
// Before looking up the entry (since this could invalidate
// it), we must reserve space for the new entry in case the
// allocation is relocated.
self.large_allocations.ensureUnusedCapacity(self.backing_allocator, 1) catch return null;
}
const entry = self.large_allocations.getEntry(@intFromPtr(old_mem.ptr)) orelse {
if (config.safety) {
@panic("Invalid free");
} else {
unreachable;
}
};
if (config.retain_metadata and entry.value_ptr.freed) {
if (config.safety) {
reportDoubleFree(ret_addr, entry.value_ptr.getStackTrace(.alloc), entry.value_ptr.getStackTrace(.free));
@panic("Unrecoverable double free");
} else {
unreachable;
}
}
if (config.safety and old_mem.len != entry.value_ptr.bytes.len) {
var addr_buf: [stack_n]usize = undefined;
const free_stack_trace = std.debug.captureCurrentStackTrace(.{ .first_address = ret_addr }, &addr_buf);
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {f} Free: {f}", .{
entry.value_ptr.bytes.len,
old_mem.len,
entry.value_ptr.getStackTrace(.alloc),
free_stack_trace,
});
}
// If this would move the allocation into a small size class,
// refuse the request, because it would require creating small
// allocation metadata.
const new_size_class_index: usize = @max(@bitSizeOf(usize) - @clz(new_size - 1), @intFromEnum(alignment));
if (new_size_class_index < self.buckets.len) return null;
// Do memory limit accounting with requested sizes rather than what
// backing_allocator returns because if we want to return
// error.OutOfMemory, we have to leave allocation untouched, and
// that is impossible to guarantee after calling
// backing_allocator.rawResize.
const prev_req_bytes = self.total_requested_bytes;
if (config.enable_memory_limit) {
const new_req_bytes = prev_req_bytes + new_size - entry.value_ptr.requested_size;
if (new_req_bytes > prev_req_bytes and new_req_bytes > self.requested_memory_limit) {
return null;
}
self.total_requested_bytes = new_req_bytes;
}
const opt_resized_ptr = if (may_move)
self.backing_allocator.rawRemap(old_mem, alignment, new_size, ret_addr)
else if (self.backing_allocator.rawResize(old_mem, alignment, new_size, ret_addr))
old_mem.ptr
else
null;
const resized_ptr = opt_resized_ptr orelse {
if (config.enable_memory_limit) {
self.total_requested_bytes = prev_req_bytes;
}
return null;
};
if (config.enable_memory_limit) {
entry.value_ptr.requested_size = new_size;
}
if (config.verbose_log) {
log.info("large resize {d} bytes at {*} to {d} at {*}", .{
old_mem.len, old_mem.ptr, new_size, resized_ptr,
});
}
entry.value_ptr.bytes = resized_ptr[0..new_size];
if (config.resize_stack_traces)
entry.value_ptr.captureStackTrace(ret_addr, .alloc);
// Update the key of the hash map if the memory was relocated.
if (resized_ptr != old_mem.ptr) {
const large_alloc = entry.value_ptr.*;
if (config.retain_metadata) {
entry.value_ptr.freed = true;
entry.value_ptr.captureStackTrace(ret_addr, .free);
} else {
self.large_allocations.removeByPtr(entry.key_ptr);
}
const gop = self.large_allocations.getOrPutAssumeCapacity(@intFromPtr(resized_ptr));
if (config.retain_metadata and !config.never_unmap) {
// Backing allocator may be reusing memory that we're retaining metadata for
assert(!gop.found_existing or gop.value_ptr.freed);
} else {
assert(!gop.found_existing); // This would mean the kernel double-mapped pages.
}
gop.value_ptr.* = large_alloc;
}
return resized_ptr;
}
/// This function assumes the object is in the large object storage regardless
/// of the parameters.
fn freeLarge(
self: *Self,
old_mem: []u8,
alignment: mem.Alignment,
ret_addr: usize,
) void {
const entry = self.large_allocations.getEntry(@intFromPtr(old_mem.ptr)) orelse {
if (config.safety) {
@panic("Invalid free");
} else {
unreachable;
}
};
if (config.retain_metadata and entry.value_ptr.freed) {
if (config.safety) {
reportDoubleFree(ret_addr, entry.value_ptr.getStackTrace(.alloc), entry.value_ptr.getStackTrace(.free));
return;
} else {
unreachable;
}
}
if (config.safety and old_mem.len != entry.value_ptr.bytes.len) {
var addr_buf: [stack_n]usize = undefined;
const free_stack_trace = std.debug.captureCurrentStackTrace(.{ .first_address = ret_addr }, &addr_buf);
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {f} Free: {f}", .{
entry.value_ptr.bytes.len,
old_mem.len,
entry.value_ptr.getStackTrace(.alloc),
free_stack_trace,
});
}
if (!config.never_unmap) {
self.backing_allocator.rawFree(old_mem, alignment, ret_addr);
}
if (config.enable_memory_limit) {
self.total_requested_bytes -= entry.value_ptr.requested_size;
}
if (config.verbose_log) {
log.info("large free {d} bytes at {*}", .{ old_mem.len, old_mem.ptr });
}
if (!config.retain_metadata) {
assert(self.large_allocations.remove(@intFromPtr(old_mem.ptr)));
} else {
entry.value_ptr.freed = true;
entry.value_ptr.captureStackTrace(ret_addr, .free);
}
}
fn alloc(context: *anyopaque, len: usize, alignment: mem.Alignment, ret_addr: usize) ?[*]u8 {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
if (config.enable_memory_limit) {
const new_req_bytes = self.total_requested_bytes + len;
if (new_req_bytes > self.requested_memory_limit) return null;
self.total_requested_bytes = new_req_bytes;
}
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
@branchHint(.unlikely);
self.large_allocations.ensureUnusedCapacity(self.backing_allocator, 1) catch return null;
const ptr = self.backing_allocator.rawAlloc(len, alignment, ret_addr) orelse return null;
const slice = ptr[0..len];
const gop = self.large_allocations.getOrPutAssumeCapacity(@intFromPtr(slice.ptr));
if (config.retain_metadata and !config.never_unmap) {
// Backing allocator may be reusing memory that we're retaining metadata for
assert(!gop.found_existing or gop.value_ptr.freed);
} else {
assert(!gop.found_existing); // This would mean the kernel double-mapped pages.
}
gop.value_ptr.bytes = slice;
if (config.enable_memory_limit)
gop.value_ptr.requested_size = len;
gop.value_ptr.captureStackTrace(ret_addr, .alloc);
if (config.retain_metadata) {
gop.value_ptr.freed = false;
if (config.never_unmap) {
gop.value_ptr.alignment = alignment;
}
}
if (config.verbose_log) {
log.info("large alloc {d} bytes at {*}", .{ slice.len, slice.ptr });
}
return slice.ptr;
}
const slot_count = slot_counts[size_class_index];
if (self.buckets[size_class_index]) |bucket| {
@branchHint(.likely);
const slot_index = bucket.allocated_count;
if (slot_index < slot_count) {
@branchHint(.likely);
bucket.allocated_count = slot_index + 1;
const used_bits_byte = bucket.usedBits(slot_index / @bitSizeOf(usize));
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
used_bits_byte.* |= (@as(usize, 1) << used_bit_index);
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
if (config.stack_trace_frames > 0) {
bucket.captureStackTrace(ret_addr, slot_count, slot_index, .alloc);
}
if (config.safety) {
bucket.requestedSizes(slot_count)[slot_index] = @intCast(len);
bucket.log2PtrAligns(slot_count)[slot_index] = alignment;
}
const page_addr = @intFromPtr(bucket) & ~(page_size - 1);
const addr = page_addr + slot_index * size_class;
if (config.verbose_log) {
log.info("small alloc {d} bytes at 0x{x}", .{ len, addr });
}
return @ptrFromInt(addr);
}
}
const page = self.backing_allocator.rawAlloc(page_size, page_align, @returnAddress()) orelse
return null;
const bucket: *BucketHeader = .fromPage(@intFromPtr(page), slot_count);
bucket.* = .{
.allocated_count = 1,
.freed_count = 0,
.prev = self.buckets[size_class_index],
.next = null,
};
if (self.buckets[size_class_index]) |old_head| {
old_head.next = bucket;
}
self.buckets[size_class_index] = bucket;
if (!config.backing_allocator_zeroes) {
@memset(@as([*]usize, @as(*[1]usize, bucket.usedBits(0)))[0..usedBitsCount(slot_count)], 0);
if (config.safety) @memset(bucket.requestedSizes(slot_count), 0);
}
bucket.usedBits(0).* = 0b1;
if (config.stack_trace_frames > 0) {
bucket.captureStackTrace(ret_addr, slot_count, 0, .alloc);
}
if (config.safety) {
bucket.requestedSizes(slot_count)[0] = @intCast(len);
bucket.log2PtrAligns(slot_count)[0] = alignment;
}
if (config.verbose_log) {
log.info("small alloc {d} bytes at 0x{x}", .{ len, @intFromPtr(page) });
}
return page;
}
fn resize(
context: *anyopaque,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
) bool {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
return self.resizeLarge(memory, alignment, new_len, return_address, false) != null;
} else {
return resizeSmall(self, memory, alignment, new_len, return_address, size_class_index);
}
}
fn remap(
context: *anyopaque,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
) ?[*]u8 {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
return self.resizeLarge(memory, alignment, new_len, return_address, true);
} else {
return if (resizeSmall(self, memory, alignment, new_len, return_address, size_class_index)) memory.ptr else null;
}
}
fn free(
context: *anyopaque,
old_memory: []u8,
alignment: mem.Alignment,
return_address: usize,
) void {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(old_memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
@branchHint(.unlikely);
self.freeLarge(old_memory, alignment, return_address);
return;
}
const slot_count = slot_counts[size_class_index];
const freed_addr = @intFromPtr(old_memory.ptr);
const page_addr = freed_addr & ~(page_size - 1);
const bucket: *BucketHeader = .fromPage(page_addr, slot_count);
if (bucket.canary != config.canary) @panic("Invalid free");
const page_offset = freed_addr - page_addr;
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_index: SlotIndex = @intCast(page_offset / size_class);
const used_byte_index = slot_index / @bitSizeOf(usize);
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
const used_byte = bucket.usedBits(used_byte_index);
const is_used = @as(u1, @truncate(used_byte.* >> used_bit_index)) != 0;
if (!is_used) {
if (config.safety) {
reportDoubleFree(
return_address,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
bucketStackTrace(bucket, slot_count, slot_index, .free),
);
// Recoverable since this is a free.
return;
} else {
unreachable;
}
}
// Definitely an in-use small alloc now.
if (config.safety) {
const requested_size = bucket.requestedSizes(slot_count)[slot_index];
if (requested_size == 0) @panic("Invalid free");
const slot_alignment = bucket.log2PtrAligns(slot_count)[slot_index];
if (old_memory.len != requested_size or alignment != slot_alignment) {
var addr_buf: [stack_n]usize = undefined;
const free_stack_trace = std.debug.captureCurrentStackTrace(.{ .first_address = return_address }, &addr_buf);
if (old_memory.len != requested_size) {
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {f} Free: {f}", .{
requested_size,
old_memory.len,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
if (alignment != slot_alignment) {
log.err("Allocation alignment {d} does not match free alignment {d}. Allocation: {f} Free: {f}", .{
slot_alignment.toByteUnits(),
alignment.toByteUnits(),
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
}
}
if (config.enable_memory_limit) {
self.total_requested_bytes -= old_memory.len;
}
if (config.stack_trace_frames > 0) {
// Capture stack trace to be the "first free", in case a double free happens.
bucket.captureStackTrace(return_address, slot_count, slot_index, .free);
}
used_byte.* &= ~(@as(usize, 1) << used_bit_index);
if (config.safety) {
bucket.requestedSizes(slot_count)[slot_index] = 0;
}
bucket.freed_count += 1;
if (bucket.freed_count == bucket.allocated_count) {
if (bucket.prev) |prev| {
prev.next = bucket.next;
}
if (bucket.next) |next| {
assert(self.buckets[size_class_index] != bucket);
next.prev = bucket.prev;
} else {
assert(self.buckets[size_class_index] == bucket);
self.buckets[size_class_index] = bucket.prev;
}
if (!config.never_unmap) {
const page: [*]align(page_size) u8 = @ptrFromInt(page_addr);
self.backing_allocator.rawFree(page[0..page_size], page_align, @returnAddress());
}
}
if (config.verbose_log) {
log.info("small free {d} bytes at {*}", .{ old_memory.len, old_memory.ptr });
}
}
fn resizeSmall(
self: *Self,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
size_class_index: usize,
) bool {
const new_size_class_index: usize = @max(@bitSizeOf(usize) - @clz(new_len - 1), @intFromEnum(alignment));
if (!config.safety) return new_size_class_index == size_class_index;
const slot_count = slot_counts[size_class_index];
const memory_addr = @intFromPtr(memory.ptr);
const page_addr = memory_addr & ~(page_size - 1);
const bucket: *BucketHeader = .fromPage(page_addr, slot_count);
if (bucket.canary != config.canary) @panic("Invalid free");
const page_offset = memory_addr - page_addr;
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_index: SlotIndex = @intCast(page_offset / size_class);
const used_byte_index = slot_index / @bitSizeOf(usize);
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
const used_byte = bucket.usedBits(used_byte_index);
const is_used = @as(u1, @truncate(used_byte.* >> used_bit_index)) != 0;
if (!is_used) {
reportDoubleFree(
return_address,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
bucketStackTrace(bucket, slot_count, slot_index, .free),
);
// Recoverable since this is a free.
return false;
}
// Definitely an in-use small alloc now.
const requested_size = bucket.requestedSizes(slot_count)[slot_index];
if (requested_size == 0) @panic("Invalid free");
const slot_alignment = bucket.log2PtrAligns(slot_count)[slot_index];
if (memory.len != requested_size or alignment != slot_alignment) {
var addr_buf: [stack_n]usize = undefined;
const free_stack_trace = std.debug.captureCurrentStackTrace(.{ .first_address = return_address }, &addr_buf);
if (memory.len != requested_size) {
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {f} Free: {f}", .{
requested_size,
memory.len,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
if (alignment != slot_alignment) {
log.err("Allocation alignment {d} does not match free alignment {d}. Allocation: {f} Free: {f}", .{
slot_alignment.toByteUnits(),
alignment.toByteUnits(),
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
}
if (new_size_class_index != size_class_index) return false;
const prev_req_bytes = self.total_requested_bytes;
if (config.enable_memory_limit) {
const new_req_bytes = prev_req_bytes - memory.len + new_len;
if (new_req_bytes > prev_req_bytes and new_req_bytes > self.requested_memory_limit) {
return false;
}
self.total_requested_bytes = new_req_bytes;
}
if (memory.len > new_len) @memset(memory[new_len..], undefined);
if (config.verbose_log)
log.info("small resize {d} bytes at {*} to {d}", .{ memory.len, memory.ptr, new_len });
if (config.safety)
bucket.requestedSizes(slot_count)[slot_index] = @intCast(new_len);
if (config.resize_stack_traces)
bucket.captureStackTrace(return_address, slot_count, slot_index, .alloc);
return true;
}
};
}
const TraceKind = enum {
alloc,
free,
};
const test_config: Config = .{};
test "small allocations - free in same order" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var list = std.array_list.Managed(*u64).init(std.testing.allocator);
defer list.deinit();
var i: usize = 0;
while (i < 513) : (i += 1) {
const ptr = try allocator.create(u64);
try list.append(ptr);
}
for (list.items) |ptr| {
allocator.destroy(ptr);
}
}
test "small allocations - free in reverse order" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var list = std.array_list.Managed(*u64).init(std.testing.allocator);
defer list.deinit();
var i: usize = 0;
while (i < 513) : (i += 1) {
const ptr = try allocator.create(u64);
try list.append(ptr);
}
while (list.pop()) |ptr| {
allocator.destroy(ptr);
}
}
test "large allocations" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
const ptr1 = try allocator.alloc(u64, 42768);
const ptr2 = try allocator.alloc(u64, 52768);
allocator.free(ptr1);
const ptr3 = try allocator.alloc(u64, 62768);
allocator.free(ptr3);
allocator.free(ptr2);
}
test "very large allocation" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
try std.testing.expectError(error.OutOfMemory, allocator.alloc(u8, math.maxInt(usize)));
}
test "realloc" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alignedAlloc(u8, .of(u32), 1);
defer allocator.free(slice);
slice[0] = 0x12;
// This reallocation should keep its pointer address.
const old_slice = slice;
slice = try allocator.realloc(slice, 2);
try std.testing.expect(old_slice.ptr == slice.ptr);
try std.testing.expect(slice[0] == 0x12);
slice[1] = 0x34;
// This requires upgrading to a larger size class
slice = try allocator.realloc(slice, 17);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[1] == 0x34);
}
test "shrink" {
var gpa: DebugAllocator(test_config) = .{};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alloc(u8, 20);
defer allocator.free(slice);
@memset(slice, 0x11);
try std.testing.expect(allocator.resize(slice, 17));
slice = slice[0..17];
for (slice) |b| {
try std.testing.expect(b == 0x11);
}
// Does not cross size class boundaries when shrinking.
try std.testing.expect(!allocator.resize(slice, 16));
}
test "large object - grow" {
if (builtin.target.cpu.arch.isWasm()) {
// Not expected to pass on targets that do not have memory mapping.
return error.SkipZigTest;
}
var gpa: DebugAllocator(test_config) = .{};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice1 = try allocator.alloc(u8, default_page_size * 2 - 20);
defer allocator.free(slice1);
const old = slice1;
slice1 = try allocator.realloc(slice1, default_page_size * 2 - 10);
try std.testing.expect(slice1.ptr == old.ptr);
slice1 = try allocator.realloc(slice1, default_page_size * 2);
try std.testing.expect(slice1.ptr == old.ptr);
slice1 = try allocator.realloc(slice1, default_page_size * 2 + 1);
}
test "realloc small object to large object" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alloc(u8, 70);
defer allocator.free(slice);
slice[0] = 0x12;
slice[60] = 0x34;
// This requires upgrading to a large object
const large_object_size = default_page_size * 2 + 50;
slice = try allocator.realloc(slice, large_object_size);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[60] == 0x34);
}
test "shrink large object to large object" {
var gpa: DebugAllocator(test_config) = .{};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alloc(u8, default_page_size * 2 + 50);
defer allocator.free(slice);
slice[0] = 0x12;
slice[60] = 0x34;
if (!allocator.resize(slice, default_page_size * 2 + 1)) return;
slice = slice.ptr[0 .. default_page_size * 2 + 1];
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[60] == 0x34);
try std.testing.expect(allocator.resize(slice, default_page_size * 2 + 1));
slice = slice[0 .. default_page_size * 2 + 1];
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[60] == 0x34);
slice = try allocator.realloc(slice, default_page_size * 2);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[60] == 0x34);
}
test "shrink large object to large object with larger alignment" {
if (!builtin.link_libc and builtin.os.tag == .wasi) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/22731
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var debug_buffer: [1000]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&debug_buffer);
const debug_allocator = fba.allocator();
const alloc_size = default_page_size * 2 + 50;
var slice = try allocator.alignedAlloc(u8, .@"16", alloc_size);
defer allocator.free(slice);
const big_alignment: usize = default_page_size * 2;
// This loop allocates until we find a page that is not aligned to the big
// alignment. Then we shrink the allocation after the loop, but increase the
// alignment to the higher one, that we know will force it to realloc.
var stuff_to_free = std.array_list.Managed([]align(16) u8).init(debug_allocator);
while (mem.isAligned(@intFromPtr(slice.ptr), big_alignment)) {
try stuff_to_free.append(slice);
slice = try allocator.alignedAlloc(u8, .@"16", alloc_size);
}
while (stuff_to_free.pop()) |item| {
allocator.free(item);
}
slice[0] = 0x12;
slice[60] = 0x34;
slice = try allocator.reallocAdvanced(slice, big_alignment, alloc_size / 2);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[60] == 0x34);
}
test "realloc large object to small object" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alloc(u8, default_page_size * 2 + 50);
defer allocator.free(slice);
slice[0] = 0x12;
slice[16] = 0x34;
slice = try allocator.realloc(slice, 19);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[16] == 0x34);
}
test "overridable mutexes" {
var gpa = DebugAllocator(.{ .MutexType = std.Thread.Mutex }){
.backing_allocator = std.testing.allocator,
.mutex = std.Thread.Mutex{},
};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
const ptr = try allocator.create(i32);
defer allocator.destroy(ptr);
}
test "non-page-allocator backing allocator" {
var gpa: DebugAllocator(.{
.backing_allocator_zeroes = false,
}) = .{
.backing_allocator = std.testing.allocator,
};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
const ptr = try allocator.create(i32);
defer allocator.destroy(ptr);
}
test "realloc large object to larger alignment" {
if (!builtin.link_libc and builtin.os.tag == .wasi) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/22731
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var debug_buffer: [1000]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&debug_buffer);
const debug_allocator = fba.allocator();
var slice = try allocator.alignedAlloc(u8, .@"16", default_page_size * 2 + 50);
defer allocator.free(slice);
const big_alignment: usize = default_page_size * 2;
// This loop allocates until we find a page that is not aligned to the big alignment.
var stuff_to_free = std.array_list.Managed([]align(16) u8).init(debug_allocator);
while (mem.isAligned(@intFromPtr(slice.ptr), big_alignment)) {
try stuff_to_free.append(slice);
slice = try allocator.alignedAlloc(u8, .@"16", default_page_size * 2 + 50);
}
while (stuff_to_free.pop()) |item| {
allocator.free(item);
}
slice[0] = 0x12;
slice[16] = 0x34;
slice = try allocator.reallocAdvanced(slice, 32, default_page_size * 2 + 100);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[16] == 0x34);
slice = try allocator.reallocAdvanced(slice, 32, default_page_size * 2 + 25);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[16] == 0x34);
slice = try allocator.reallocAdvanced(slice, big_alignment, default_page_size * 2 + 100);
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[16] == 0x34);
}
test "large object rejects shrinking to small" {
if (builtin.target.cpu.arch.isWasm()) {
// Not expected to pass on targets that do not have memory mapping.
return error.SkipZigTest;
}
var failing_allocator = std.testing.FailingAllocator.init(std.heap.page_allocator, .{ .fail_index = 3 });
var gpa: DebugAllocator(.{}) = .{
.backing_allocator = failing_allocator.allocator(),
};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
var slice = try allocator.alloc(u8, default_page_size * 2 + 50);
defer allocator.free(slice);
slice[0] = 0x12;
slice[3] = 0x34;
try std.testing.expect(!allocator.resize(slice, 4));
try std.testing.expect(slice[0] == 0x12);
try std.testing.expect(slice[3] == 0x34);
}
test "objects of size 1024 and 2048" {
var gpa = DebugAllocator(test_config){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
const slice = try allocator.alloc(u8, 1025);
const slice2 = try allocator.alloc(u8, 3000);
allocator.free(slice);
allocator.free(slice2);
}
test "setting a memory cap" {
var gpa = DebugAllocator(.{ .enable_memory_limit = true }){};
defer std.testing.expect(gpa.deinit() == .ok) catch @panic("leak");
const allocator = gpa.allocator();
gpa.requested_memory_limit = 1010;
const small = try allocator.create(i32);
try std.testing.expect(gpa.total_requested_bytes == 4);
const big = try allocator.alloc(u8, 1000);
try std.testing.expect(gpa.total_requested_bytes == 1004);
try std.testing.expectError(error.OutOfMemory, allocator.create(u64));
allocator.destroy(small);
try std.testing.expect(gpa.total_requested_bytes == 1000);
allocator.free(big);
try std.testing.expect(gpa.total_requested_bytes == 0);
const exact = try allocator.alloc(u8, 1010);
try std.testing.expect(gpa.total_requested_bytes == 1010);
allocator.free(exact);
}
test "large allocations count requested size not backing size" {
var gpa: DebugAllocator(.{ .enable_memory_limit = true }) = .{};
const allocator = gpa.allocator();
var buf = try allocator.alignedAlloc(u8, .@"1", default_page_size + 1);
try std.testing.expectEqual(default_page_size + 1, gpa.total_requested_bytes);
buf = try allocator.realloc(buf, 1);
try std.testing.expectEqual(1, gpa.total_requested_bytes);
buf = try allocator.realloc(buf, 2);
try std.testing.expectEqual(2, gpa.total_requested_bytes);
}
test "retain metadata and never unmap" {
var gpa = std.heap.DebugAllocator(.{
.safety = true,
.never_unmap = true,
.retain_metadata = true,
}){};
defer std.debug.assert(gpa.deinit() == .ok);
const allocator = gpa.allocator();
const alloc = try allocator.alloc(u8, 8);
allocator.free(alloc);
const alloc2 = try allocator.alloc(u8, 8);
allocator.free(alloc2);
}
|