1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
const std = @import("std");
const mem = std.mem;
const expectEqual = std.testing.expectEqual;
const rotl = std.math.rotl;
pub const XxHash64 = struct {
acc1: u64,
acc2: u64,
acc3: u64,
acc4: u64,
seed: u64,
buf: [32]u8,
buf_len: usize,
byte_count: usize,
const prime_1 = 0x9E3779B185EBCA87; // 0b1001111000110111011110011011000110000101111010111100101010000111
const prime_2 = 0xC2B2AE3D27D4EB4F; // 0b1100001010110010101011100011110100100111110101001110101101001111
const prime_3 = 0x165667B19E3779F9; // 0b0001011001010110011001111011000110011110001101110111100111111001
const prime_4 = 0x85EBCA77C2B2AE63; // 0b1000010111101011110010100111011111000010101100101010111001100011
const prime_5 = 0x27D4EB2F165667C5; // 0b0010011111010100111010110010111100010110010101100110011111000101
pub fn init(seed: u64) XxHash64 {
return XxHash64{
.seed = seed,
.acc1 = seed +% prime_1 +% prime_2,
.acc2 = seed +% prime_2,
.acc3 = seed,
.acc4 = seed -% prime_1,
.buf = undefined,
.buf_len = 0,
.byte_count = 0,
};
}
pub fn update(self: *XxHash64, input: []const u8) void {
if (input.len < 32 - self.buf_len) {
mem.copy(u8, self.buf[self.buf_len..], input);
self.buf_len += input.len;
return;
}
var i: usize = 0;
if (self.buf_len > 0) {
i = 32 - self.buf_len;
mem.copy(u8, self.buf[self.buf_len..], input[0..i]);
self.processStripe(&self.buf);
self.buf_len = 0;
}
while (i + 32 <= input.len) : (i += 32) {
self.processStripe(input[i..][0..32]);
}
const remaining_bytes = input[i..];
mem.copy(u8, &self.buf, remaining_bytes);
self.buf_len = remaining_bytes.len;
}
inline fn processStripe(self: *XxHash64, buf: *const [32]u8) void {
self.acc1 = round(self.acc1, mem.readIntLittle(u64, buf[0..8]));
self.acc2 = round(self.acc2, mem.readIntLittle(u64, buf[8..16]));
self.acc3 = round(self.acc3, mem.readIntLittle(u64, buf[16..24]));
self.acc4 = round(self.acc4, mem.readIntLittle(u64, buf[24..32]));
self.byte_count += 32;
}
inline fn round(acc: u64, lane: u64) u64 {
const a = acc +% (lane *% prime_2);
const b = rotl(u64, a, 31);
return b *% prime_1;
}
pub fn final(self: *XxHash64) u64 {
var acc: u64 = undefined;
if (self.byte_count < 32) {
acc = self.seed +% prime_5;
} else {
acc = rotl(u64, self.acc1, 1) +% rotl(u64, self.acc2, 7) +%
rotl(u64, self.acc3, 12) +% rotl(u64, self.acc4, 18);
acc = mergeAccumulator(acc, self.acc1);
acc = mergeAccumulator(acc, self.acc2);
acc = mergeAccumulator(acc, self.acc3);
acc = mergeAccumulator(acc, self.acc4);
}
acc = acc +% @as(u64, self.byte_count) +% @as(u64, self.buf_len);
var pos: usize = 0;
while (pos + 8 <= self.buf_len) : (pos += 8) {
const lane = mem.readIntLittle(u64, self.buf[pos..][0..8]);
acc ^= round(0, lane);
acc = rotl(u64, acc, 27) *% prime_1;
acc +%= prime_4;
}
if (pos + 4 <= self.buf_len) {
const lane = @as(u64, mem.readIntLittle(u32, self.buf[pos..][0..4]));
acc ^= lane *% prime_1;
acc = rotl(u64, acc, 23) *% prime_2;
acc +%= prime_3;
pos += 4;
}
while (pos < self.buf_len) : (pos += 1) {
const lane = @as(u64, self.buf[pos]);
acc ^= lane *% prime_5;
acc = rotl(u64, acc, 11) *% prime_1;
}
acc ^= acc >> 33;
acc *%= prime_2;
acc ^= acc >> 29;
acc *%= prime_3;
acc ^= acc >> 32;
return acc;
}
inline fn mergeAccumulator(acc: u64, other: u64) u64 {
const a = acc ^ round(0, other);
const b = a *% prime_1;
return b +% prime_4;
}
pub fn hash(input: []const u8) u64 {
var hasher = XxHash64.init(0);
hasher.update(input);
return hasher.final();
}
};
pub const XxHash32 = struct {
acc1: u32,
acc2: u32,
acc3: u32,
acc4: u32,
seed: u32,
buf: [16]u8,
buf_len: usize,
byte_count: usize,
const prime_1 = 0x9E3779B1; // 0b10011110001101110111100110110001
const prime_2 = 0x85EBCA77; // 0b10000101111010111100101001110111
const prime_3 = 0xC2B2AE3D; // 0b11000010101100101010111000111101
const prime_4 = 0x27D4EB2F; // 0b00100111110101001110101100101111
const prime_5 = 0x165667B1; // 0b00010110010101100110011110110001
pub fn init(seed: u32) XxHash32 {
return XxHash32{
.seed = seed,
.acc1 = seed +% prime_1 +% prime_2,
.acc2 = seed +% prime_2,
.acc3 = seed,
.acc4 = seed -% prime_1,
.buf = undefined,
.buf_len = 0,
.byte_count = 0,
};
}
pub fn update(self: *XxHash32, input: []const u8) void {
if (input.len < 16 - self.buf_len) {
mem.copy(u8, self.buf[self.buf_len..], input);
self.buf_len += input.len;
return;
}
var i: usize = 0;
if (self.buf_len > 0) {
i = 16 - self.buf_len;
mem.copy(u8, self.buf[self.buf_len..], input[0..i]);
self.processStripe(&self.buf);
self.buf_len = 0;
}
while (i + 16 <= input.len) : (i += 16) {
self.processStripe(input[i..][0..16]);
}
const remaining_bytes = input[i..];
mem.copy(u8, &self.buf, remaining_bytes);
self.buf_len = remaining_bytes.len;
}
inline fn processStripe(self: *XxHash32, buf: *const [16]u8) void {
self.acc1 = round(self.acc1, mem.readIntLittle(u32, buf[0..4]));
self.acc2 = round(self.acc2, mem.readIntLittle(u32, buf[4..8]));
self.acc3 = round(self.acc3, mem.readIntLittle(u32, buf[8..12]));
self.acc4 = round(self.acc4, mem.readIntLittle(u32, buf[12..16]));
self.byte_count += 16;
}
inline fn round(acc: u32, lane: u32) u32 {
const a = acc +% (lane *% prime_2);
const b = rotl(u32, a, 13);
return b *% prime_1;
}
pub fn final(self: *XxHash32) u32 {
var acc: u32 = undefined;
if (self.byte_count < 16) {
acc = self.seed +% prime_5;
} else {
acc = rotl(u32, self.acc1, 1) +% rotl(u32, self.acc2, 7) +%
rotl(u32, self.acc3, 12) +% rotl(u32, self.acc4, 18);
}
acc = acc +% @intCast(u32, self.byte_count) +% @intCast(u32, self.buf_len);
var pos: usize = 0;
while (pos + 4 <= self.buf_len) : (pos += 4) {
const lane = mem.readIntLittle(u32, self.buf[pos..][0..4]);
acc +%= lane *% prime_3;
acc = rotl(u32, acc, 17) *% prime_4;
}
while (pos < self.buf_len) : (pos += 1) {
const lane = @as(u32, self.buf[pos]);
acc +%= lane *% prime_5;
acc = rotl(u32, acc, 11) *% prime_1;
}
acc ^= acc >> 15;
acc *%= prime_2;
acc ^= acc >> 13;
acc *%= prime_3;
acc ^= acc >> 16;
return acc;
}
pub fn hash(input: []const u8) u32 {
var hasher = XxHash32.init(0);
hasher.update(input);
return hasher.final();
}
};
test "xxhash64" {
const hash = XxHash64.hash;
try expectEqual(hash(""), 0xef46db3751d8e999);
try expectEqual(hash("a"), 0xd24ec4f1a98c6e5b);
try expectEqual(hash("abc"), 0x44bc2cf5ad770999);
try expectEqual(hash("message digest"), 0x066ed728fceeb3be);
try expectEqual(hash("abcdefghijklmnopqrstuvwxyz"), 0xcfe1f278fa89835c);
try expectEqual(hash("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"), 0xaaa46907d3047814);
try expectEqual(hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890"), 0xe04a477f19ee145d);
}
test "xxhash32" {
const hash = XxHash32.hash;
try expectEqual(hash(""), 0x02cc5d05);
try expectEqual(hash("a"), 0x550d7456);
try expectEqual(hash("abc"), 0x32d153ff);
try expectEqual(hash("message digest"), 0x7c948494);
try expectEqual(hash("abcdefghijklmnopqrstuvwxyz"), 0x63a14d5f);
try expectEqual(hash("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"), 0x9c285e64);
try expectEqual(hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890"), 0x9c05f475);
}
|