1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
// There are two implementations of CRC32 implemented with the following key characteristics:
//
// - Crc32WithPoly uses 8Kb of tables but is ~10x faster than the small method.
//
// - Crc32SmallWithPoly uses only 64 bytes of memory but is slower. Be aware that this is
// still moderately fast just slow relative to the slicing approach.
const std = @import("std");
const builtin = @import("builtin");
const debug = std.debug;
const testing = std.testing;
pub usingnamespace @import("crc/catalog.zig");
pub fn Algorithm(comptime W: type) type {
return struct {
polynomial: W,
initial: W,
reflect_input: bool,
reflect_output: bool,
xor_output: W,
};
}
pub fn Crc(comptime W: type, comptime algorithm: Algorithm(W)) type {
return struct {
const Self = @This();
const I = if (@bitSizeOf(W) < 8) u8 else W;
const lookup_table = blk: {
@setEvalBranchQuota(2500);
const poly = if (algorithm.reflect_input)
@bitReverse(@as(I, algorithm.polynomial)) >> (@bitSizeOf(I) - @bitSizeOf(W))
else
@as(I, algorithm.polynomial) << (@bitSizeOf(I) - @bitSizeOf(W));
var table: [256]I = undefined;
for (&table, 0..) |*e, i| {
var crc: I = i;
if (algorithm.reflect_input) {
var j: usize = 0;
while (j < 8) : (j += 1) {
crc = (crc >> 1) ^ ((crc & 1) * poly);
}
} else {
crc <<= @bitSizeOf(I) - 8;
var j: usize = 0;
while (j < 8) : (j += 1) {
crc = (crc << 1) ^ (((crc >> (@bitSizeOf(I) - 1)) & 1) * poly);
}
}
e.* = crc;
}
break :blk table;
};
crc: I,
pub fn init() Self {
const initial = if (algorithm.reflect_input)
@bitReverse(@as(I, algorithm.initial)) >> (@bitSizeOf(I) - @bitSizeOf(W))
else
@as(I, algorithm.initial) << (@bitSizeOf(I) - @bitSizeOf(W));
return Self{ .crc = initial };
}
inline fn tableEntry(index: I) I {
return lookup_table[@as(u8, @intCast(index & 0xFF))];
}
pub fn update(self: *Self, bytes: []const u8) void {
var i: usize = 0;
if (@bitSizeOf(I) <= 8) {
while (i < bytes.len) : (i += 1) {
self.crc = tableEntry(self.crc ^ bytes[i]);
}
} else if (algorithm.reflect_input) {
while (i < bytes.len) : (i += 1) {
const table_index = self.crc ^ bytes[i];
self.crc = tableEntry(table_index) ^ (self.crc >> 8);
}
} else {
while (i < bytes.len) : (i += 1) {
const table_index = (self.crc >> (@bitSizeOf(I) - 8)) ^ bytes[i];
self.crc = tableEntry(table_index) ^ (self.crc << 8);
}
}
}
pub fn final(self: Self) W {
var c = self.crc;
if (algorithm.reflect_input != algorithm.reflect_output) {
c = @bitReverse(c);
}
if (!algorithm.reflect_output) {
c >>= @bitSizeOf(I) - @bitSizeOf(W);
}
return @as(W, @intCast(c ^ algorithm.xor_output));
}
pub fn hash(bytes: []const u8) W {
var c = Self.init();
c.update(bytes);
return c.final();
}
};
}
pub const Polynomial = enum(u32) {
IEEE = 0xedb88320,
Castagnoli = 0x82f63b78,
Koopman = 0xeb31d82e,
_,
};
// IEEE is by far the most common CRC and so is aliased by default.
pub const Crc32 = Crc32WithPoly(.IEEE);
// slicing-by-8 crc32 implementation.
pub fn Crc32WithPoly(comptime poly: Polynomial) type {
return struct {
const Self = @This();
const lookup_tables = block: {
@setEvalBranchQuota(20000);
var tables: [8][256]u32 = undefined;
for (&tables[0], 0..) |*e, i| {
var crc = @as(u32, @intCast(i));
var j: usize = 0;
while (j < 8) : (j += 1) {
if (crc & 1 == 1) {
crc = (crc >> 1) ^ @intFromEnum(poly);
} else {
crc = (crc >> 1);
}
}
e.* = crc;
}
var i: usize = 0;
while (i < 256) : (i += 1) {
var crc = tables[0][i];
var j: usize = 1;
while (j < 8) : (j += 1) {
const index: u8 = @truncate(crc);
crc = tables[0][index] ^ (crc >> 8);
tables[j][i] = crc;
}
}
break :block tables;
};
crc: u32,
pub fn init() Self {
return Self{ .crc = 0xffffffff };
}
pub fn update(self: *Self, input: []const u8) void {
var i: usize = 0;
while (i + 8 <= input.len) : (i += 8) {
const p = input[i..][0..8];
// Unrolling this way gives ~50Mb/s increase
self.crc ^= std.mem.readIntLittle(u32, p[0..4]);
self.crc =
lookup_tables[0][p[7]] ^
lookup_tables[1][p[6]] ^
lookup_tables[2][p[5]] ^
lookup_tables[3][p[4]] ^
lookup_tables[4][@as(u8, @truncate(self.crc >> 24))] ^
lookup_tables[5][@as(u8, @truncate(self.crc >> 16))] ^
lookup_tables[6][@as(u8, @truncate(self.crc >> 8))] ^
lookup_tables[7][@as(u8, @truncate(self.crc >> 0))];
}
while (i < input.len) : (i += 1) {
const index = @as(u8, @truncate(self.crc)) ^ input[i];
self.crc = (self.crc >> 8) ^ lookup_tables[0][index];
}
}
pub fn final(self: *Self) u32 {
return ~self.crc;
}
pub fn hash(input: []const u8) u32 {
var c = Self.init();
c.update(input);
return c.final();
}
};
}
const verify = @import("verify.zig");
test "crc32 ieee" {
const Crc32Ieee = Crc32WithPoly(.IEEE);
try testing.expect(Crc32Ieee.hash("") == 0x00000000);
try testing.expect(Crc32Ieee.hash("a") == 0xe8b7be43);
try testing.expect(Crc32Ieee.hash("abc") == 0x352441c2);
}
test "crc32 castagnoli" {
const Crc32Castagnoli = Crc32WithPoly(.Castagnoli);
try testing.expect(Crc32Castagnoli.hash("") == 0x00000000);
try testing.expect(Crc32Castagnoli.hash("a") == 0xc1d04330);
try testing.expect(Crc32Castagnoli.hash("abc") == 0x364b3fb7);
}
test "crc32 iterative" {
try verify.iterativeApi(Crc32WithPoly(.IEEE));
}
// half-byte lookup table implementation.
pub fn Crc32SmallWithPoly(comptime poly: Polynomial) type {
return struct {
const Self = @This();
const lookup_table = block: {
var table: [16]u32 = undefined;
for (&table, 0..) |*e, i| {
var crc = @as(u32, @intCast(i * 16));
var j: usize = 0;
while (j < 8) : (j += 1) {
if (crc & 1 == 1) {
crc = (crc >> 1) ^ @intFromEnum(poly);
} else {
crc = (crc >> 1);
}
}
e.* = crc;
}
break :block table;
};
crc: u32,
pub fn init() Self {
return Self{ .crc = 0xffffffff };
}
pub fn update(self: *Self, input: []const u8) void {
for (input) |b| {
self.crc = lookup_table[@as(u4, @truncate(self.crc ^ (b >> 0)))] ^ (self.crc >> 4);
self.crc = lookup_table[@as(u4, @truncate(self.crc ^ (b >> 4)))] ^ (self.crc >> 4);
}
}
pub fn final(self: *Self) u32 {
return ~self.crc;
}
pub fn hash(input: []const u8) u32 {
var c = Self.init();
c.update(input);
return c.final();
}
};
}
test "small crc32 iterative" {
try verify.iterativeApi(Crc32SmallWithPoly(.IEEE));
}
test "small crc32 ieee" {
const Crc32Ieee = Crc32SmallWithPoly(.IEEE);
try testing.expect(Crc32Ieee.hash("") == 0x00000000);
try testing.expect(Crc32Ieee.hash("a") == 0xe8b7be43);
try testing.expect(Crc32Ieee.hash("abc") == 0x352441c2);
}
test "small crc32 castagnoli" {
const Crc32Castagnoli = Crc32SmallWithPoly(.Castagnoli);
try testing.expect(Crc32Castagnoli.hash("") == 0x00000000);
try testing.expect(Crc32Castagnoli.hash("a") == 0xc1d04330);
try testing.expect(Crc32Castagnoli.hash("abc") == 0x364b3fb7);
}
|