1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
const builtin = @import("builtin");
const std = @import("../std.zig");
const mem = std.mem;
const debug = std.debug;
const leb = std.leb;
const dwarf = std.dwarf;
const abi = dwarf.abi;
const expressions = dwarf.expressions;
const assert = std.debug.assert;
const native_endian = builtin.cpu.arch.endian();
const Opcode = enum(u8) {
advance_loc = 0x1 << 6,
offset = 0x2 << 6,
restore = 0x3 << 6,
nop = 0x00,
set_loc = 0x01,
advance_loc1 = 0x02,
advance_loc2 = 0x03,
advance_loc4 = 0x04,
offset_extended = 0x05,
restore_extended = 0x06,
undefined = 0x07,
same_value = 0x08,
register = 0x09,
remember_state = 0x0a,
restore_state = 0x0b,
def_cfa = 0x0c,
def_cfa_register = 0x0d,
def_cfa_offset = 0x0e,
def_cfa_expression = 0x0f,
expression = 0x10,
offset_extended_sf = 0x11,
def_cfa_sf = 0x12,
def_cfa_offset_sf = 0x13,
val_offset = 0x14,
val_offset_sf = 0x15,
val_expression = 0x16,
// These opcodes encode an operand in the lower 6 bits of the opcode itself
pub const lo_inline = @intFromEnum(Opcode.advance_loc);
pub const hi_inline = @intFromEnum(Opcode.restore) | 0b111111;
// These opcodes are trailed by zero or more operands
pub const lo_reserved = @intFromEnum(Opcode.nop);
pub const hi_reserved = @intFromEnum(Opcode.val_expression);
// Vendor-specific opcodes
pub const lo_user = 0x1c;
pub const hi_user = 0x3f;
};
fn readBlock(stream: *std.io.FixedBufferStream([]const u8)) ![]const u8 {
const reader = stream.reader();
const block_len = try leb.readULEB128(usize, reader);
if (stream.pos + block_len > stream.buffer.len) return error.InvalidOperand;
const block = stream.buffer[stream.pos..][0..block_len];
reader.context.pos += block_len;
return block;
}
pub const Instruction = union(Opcode) {
advance_loc: struct {
delta: u8,
},
offset: struct {
register: u8,
offset: u64,
},
restore: struct {
register: u8,
},
nop: void,
set_loc: struct {
address: u64,
},
advance_loc1: struct {
delta: u8,
},
advance_loc2: struct {
delta: u16,
},
advance_loc4: struct {
delta: u32,
},
offset_extended: struct {
register: u8,
offset: u64,
},
restore_extended: struct {
register: u8,
},
undefined: struct {
register: u8,
},
same_value: struct {
register: u8,
},
register: struct {
register: u8,
target_register: u8,
},
remember_state: void,
restore_state: void,
def_cfa: struct {
register: u8,
offset: u64,
},
def_cfa_register: struct {
register: u8,
},
def_cfa_offset: struct {
offset: u64,
},
def_cfa_expression: struct {
block: []const u8,
},
expression: struct {
register: u8,
block: []const u8,
},
offset_extended_sf: struct {
register: u8,
offset: i64,
},
def_cfa_sf: struct {
register: u8,
offset: i64,
},
def_cfa_offset_sf: struct {
offset: i64,
},
val_offset: struct {
register: u8,
offset: u64,
},
val_offset_sf: struct {
register: u8,
offset: i64,
},
val_expression: struct {
register: u8,
block: []const u8,
},
pub fn read(
stream: *std.io.FixedBufferStream([]const u8),
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Instruction {
const reader = stream.reader();
switch (try reader.readByte()) {
Opcode.lo_inline...Opcode.hi_inline => |opcode| {
const e: Opcode = @enumFromInt(opcode & 0b11000000);
const value: u6 = @intCast(opcode & 0b111111);
return switch (e) {
.advance_loc => .{
.advance_loc = .{ .delta = value },
},
.offset => .{
.offset = .{
.register = value,
.offset = try leb.readULEB128(u64, reader),
},
},
.restore => .{
.restore = .{ .register = value },
},
else => unreachable,
};
},
Opcode.lo_reserved...Opcode.hi_reserved => |opcode| {
const e: Opcode = @enumFromInt(opcode);
return switch (e) {
.advance_loc,
.offset,
.restore,
=> unreachable,
.nop => .{ .nop = {} },
.set_loc => .{
.set_loc = .{
.address = switch (addr_size_bytes) {
2 => try reader.readInt(u16, endian),
4 => try reader.readInt(u32, endian),
8 => try reader.readInt(u64, endian),
else => return error.InvalidAddrSize,
},
},
},
.advance_loc1 => .{
.advance_loc1 = .{ .delta = try reader.readByte() },
},
.advance_loc2 => .{
.advance_loc2 = .{ .delta = try reader.readInt(u16, endian) },
},
.advance_loc4 => .{
.advance_loc4 = .{ .delta = try reader.readInt(u32, endian) },
},
.offset_extended => .{
.offset_extended = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.restore_extended => .{
.restore_extended = .{
.register = try leb.readULEB128(u8, reader),
},
},
.undefined => .{
.undefined = .{
.register = try leb.readULEB128(u8, reader),
},
},
.same_value => .{
.same_value = .{
.register = try leb.readULEB128(u8, reader),
},
},
.register => .{
.register = .{
.register = try leb.readULEB128(u8, reader),
.target_register = try leb.readULEB128(u8, reader),
},
},
.remember_state => .{ .remember_state = {} },
.restore_state => .{ .restore_state = {} },
.def_cfa => .{
.def_cfa = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.def_cfa_register => .{
.def_cfa_register = .{
.register = try leb.readULEB128(u8, reader),
},
},
.def_cfa_offset => .{
.def_cfa_offset = .{
.offset = try leb.readULEB128(u64, reader),
},
},
.def_cfa_expression => .{
.def_cfa_expression = .{
.block = try readBlock(stream),
},
},
.expression => .{
.expression = .{
.register = try leb.readULEB128(u8, reader),
.block = try readBlock(stream),
},
},
.offset_extended_sf => .{
.offset_extended_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.def_cfa_sf => .{
.def_cfa_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.def_cfa_offset_sf => .{
.def_cfa_offset_sf = .{
.offset = try leb.readILEB128(i64, reader),
},
},
.val_offset => .{
.val_offset = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.val_offset_sf => .{
.val_offset_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.val_expression => .{
.val_expression = .{
.register = try leb.readULEB128(u8, reader),
.block = try readBlock(stream),
},
},
};
},
Opcode.lo_user...Opcode.hi_user => return error.UnimplementedUserOpcode,
else => return error.InvalidOpcode,
}
}
};
/// Since register rules are applied (usually) during a panic,
/// checked addition / subtraction is used so that we can return
/// an error and fall back to FP-based unwinding.
pub fn applyOffset(base: usize, offset: i64) !usize {
return if (offset >= 0)
try std.math.add(usize, base, @as(usize, @intCast(offset)))
else
try std.math.sub(usize, base, @as(usize, @intCast(-offset)));
}
/// This is a virtual machine that runs DWARF call frame instructions.
pub const VirtualMachine = struct {
/// See section 6.4.1 of the DWARF5 specification for details on each
const RegisterRule = union(enum) {
// The spec says that the default rule for each column is the undefined rule.
// However, it also allows ABI / compiler authors to specify alternate defaults, so
// there is a distinction made here.
default: void,
undefined: void,
same_value: void,
// offset(N)
offset: i64,
// val_offset(N)
val_offset: i64,
// register(R)
register: u8,
// expression(E)
expression: []const u8,
// val_expression(E)
val_expression: []const u8,
// Augmenter-defined rule
architectural: void,
};
/// Each row contains unwinding rules for a set of registers.
pub const Row = struct {
/// Offset from `FrameDescriptionEntry.pc_begin`
offset: u64 = 0,
/// Special-case column that defines the CFA (Canonical Frame Address) rule.
/// The register field of this column defines the register that CFA is derived from.
cfa: Column = .{},
/// The register fields in these columns define the register the rule applies to.
columns: ColumnRange = .{},
/// Indicates that the next write to any column in this row needs to copy
/// the backing column storage first, as it may be referenced by previous rows.
copy_on_write: bool = false,
};
pub const Column = struct {
register: ?u8 = null,
rule: RegisterRule = .{ .default = {} },
/// Resolves the register rule and places the result into `out` (see dwarf.abi.regBytes)
pub fn resolveValue(
self: Column,
context: *dwarf.UnwindContext,
expression_context: dwarf.expressions.ExpressionContext,
out: []u8,
) !void {
switch (self.rule) {
.default => {
const register = self.register orelse return error.InvalidRegister;
try abi.getRegDefaultValue(register, context, out);
},
.undefined => {
@memset(out, undefined);
},
.same_value => {
// TODO: This copy could be eliminated if callers always copy the state then call this function to update it
const register = self.register orelse return error.InvalidRegister;
const src = try abi.regBytes(context.thread_context, register, context.reg_context);
if (src.len != out.len) return error.RegisterSizeMismatch;
@memcpy(out, src);
},
.offset => |offset| {
if (context.cfa) |cfa| {
const addr = try applyOffset(cfa, offset);
if (expression_context.isValidMemory) |isValidMemory| if (!isValidMemory(addr)) return error.InvalidAddress;
const ptr: *const usize = @ptrFromInt(addr);
mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian);
} else return error.InvalidCFA;
},
.val_offset => |offset| {
if (context.cfa) |cfa| {
mem.writeInt(usize, out[0..@sizeOf(usize)], try applyOffset(cfa, offset), native_endian);
} else return error.InvalidCFA;
},
.register => |register| {
const src = try abi.regBytes(context.thread_context, register, context.reg_context);
if (src.len != out.len) return error.RegisterSizeMismatch;
@memcpy(out, try abi.regBytes(context.thread_context, register, context.reg_context));
},
.expression => |expression| {
context.stack_machine.reset();
const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?);
const addr = if (value) |v| blk: {
if (v != .generic) return error.InvalidExpressionValue;
break :blk v.generic;
} else return error.NoExpressionValue;
if (!context.isValidMemory(addr)) return error.InvalidExpressionAddress;
const ptr: *usize = @ptrFromInt(addr);
mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian);
},
.val_expression => |expression| {
context.stack_machine.reset();
const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?);
if (value) |v| {
if (v != .generic) return error.InvalidExpressionValue;
mem.writeInt(usize, out[0..@sizeOf(usize)], v.generic, native_endian);
} else return error.NoExpressionValue;
},
.architectural => return error.UnimplementedRegisterRule,
}
}
};
const ColumnRange = struct {
/// Index into `columns` of the first column in this row.
start: usize = undefined,
len: u8 = 0,
};
columns: std.ArrayListUnmanaged(Column) = .{},
stack: std.ArrayListUnmanaged(ColumnRange) = .{},
current_row: Row = .{},
/// The result of executing the CIE's initial_instructions
cie_row: ?Row = null,
pub fn deinit(self: *VirtualMachine, allocator: std.mem.Allocator) void {
self.stack.deinit(allocator);
self.columns.deinit(allocator);
self.* = undefined;
}
pub fn reset(self: *VirtualMachine) void {
self.stack.clearRetainingCapacity();
self.columns.clearRetainingCapacity();
self.current_row = .{};
self.cie_row = null;
}
/// Return a slice backed by the row's non-CFA columns
pub fn rowColumns(self: VirtualMachine, row: Row) []Column {
if (row.columns.len == 0) return &.{};
return self.columns.items[row.columns.start..][0..row.columns.len];
}
/// Either retrieves or adds a column for `register` (non-CFA) in the current row.
fn getOrAddColumn(self: *VirtualMachine, allocator: std.mem.Allocator, register: u8) !*Column {
for (self.rowColumns(self.current_row)) |*c| {
if (c.register == register) return c;
}
if (self.current_row.columns.len == 0) {
self.current_row.columns.start = self.columns.items.len;
}
self.current_row.columns.len += 1;
const column = try self.columns.addOne(allocator);
column.* = .{
.register = register,
};
return column;
}
/// Runs the CIE instructions, then the FDE instructions. Execution halts
/// once the row that corresponds to `pc` is known, and the row is returned.
pub fn runTo(
self: *VirtualMachine,
allocator: std.mem.Allocator,
pc: u64,
cie: dwarf.CommonInformationEntry,
fde: dwarf.FrameDescriptionEntry,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Row {
assert(self.cie_row == null);
if (pc < fde.pc_begin or pc >= fde.pc_begin + fde.pc_range) return error.AddressOutOfRange;
var prev_row: Row = self.current_row;
var cie_stream = std.io.fixedBufferStream(cie.initial_instructions);
var fde_stream = std.io.fixedBufferStream(fde.instructions);
var streams = [_]*std.io.FixedBufferStream([]const u8){
&cie_stream,
&fde_stream,
};
for (&streams, 0..) |stream, i| {
while (stream.pos < stream.buffer.len) {
const instruction = try dwarf.call_frame.Instruction.read(stream, addr_size_bytes, endian);
prev_row = try self.step(allocator, cie, i == 0, instruction);
if (pc < fde.pc_begin + self.current_row.offset) return prev_row;
}
}
return self.current_row;
}
pub fn runToNative(
self: *VirtualMachine,
allocator: std.mem.Allocator,
pc: u64,
cie: dwarf.CommonInformationEntry,
fde: dwarf.FrameDescriptionEntry,
) !Row {
return self.runTo(allocator, pc, cie, fde, @sizeOf(usize), builtin.target.cpu.arch.endian());
}
fn resolveCopyOnWrite(self: *VirtualMachine, allocator: std.mem.Allocator) !void {
if (!self.current_row.copy_on_write) return;
const new_start = self.columns.items.len;
if (self.current_row.columns.len > 0) {
try self.columns.ensureUnusedCapacity(allocator, self.current_row.columns.len);
self.columns.appendSliceAssumeCapacity(self.rowColumns(self.current_row));
self.current_row.columns.start = new_start;
}
}
/// Executes a single instruction.
/// If this instruction is from the CIE, `is_initial` should be set.
/// Returns the value of `current_row` before executing this instruction.
pub fn step(
self: *VirtualMachine,
allocator: std.mem.Allocator,
cie: dwarf.CommonInformationEntry,
is_initial: bool,
instruction: Instruction,
) !Row {
// CIE instructions must be run before FDE instructions
assert(!is_initial or self.cie_row == null);
if (!is_initial and self.cie_row == null) {
self.cie_row = self.current_row;
self.current_row.copy_on_write = true;
}
const prev_row = self.current_row;
switch (instruction) {
.set_loc => |i| {
if (i.address <= self.current_row.offset) return error.InvalidOperation;
// TODO: Check cie.segment_selector_size != 0 for DWARFV4
self.current_row.offset = i.address;
},
inline .advance_loc,
.advance_loc1,
.advance_loc2,
.advance_loc4,
=> |i| {
self.current_row.offset += i.delta * cie.code_alignment_factor;
self.current_row.copy_on_write = true;
},
inline .offset,
.offset_extended,
.offset_extended_sf,
=> |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor };
},
inline .restore,
.restore_extended,
=> |i| {
try self.resolveCopyOnWrite(allocator);
if (self.cie_row) |cie_row| {
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = for (self.rowColumns(cie_row)) |cie_column| {
if (cie_column.register == i.register) break cie_column.rule;
} else .{ .default = {} };
} else return error.InvalidOperation;
},
.nop => {},
.undefined => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .undefined = {} };
},
.same_value => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .same_value = {} };
},
.register => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .register = i.target_register };
},
.remember_state => {
try self.stack.append(allocator, self.current_row.columns);
self.current_row.copy_on_write = true;
},
.restore_state => {
const restored_columns = self.stack.popOrNull() orelse return error.InvalidOperation;
self.columns.shrinkRetainingCapacity(self.columns.items.len - self.current_row.columns.len);
try self.columns.ensureUnusedCapacity(allocator, restored_columns.len);
self.current_row.columns.start = self.columns.items.len;
self.current_row.columns.len = restored_columns.len;
self.columns.appendSliceAssumeCapacity(self.columns.items[restored_columns.start..][0..restored_columns.len]);
},
.def_cfa => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa = .{
.register = i.register,
.rule = .{ .val_offset = @intCast(i.offset) },
};
},
.def_cfa_sf => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa = .{
.register = i.register,
.rule = .{ .val_offset = i.offset * cie.data_alignment_factor },
};
},
.def_cfa_register => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.register = i.register;
},
.def_cfa_offset => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.rule = .{
.val_offset = @intCast(i.offset),
};
},
.def_cfa_offset_sf => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.rule = .{
.val_offset = i.offset * cie.data_alignment_factor,
};
},
.def_cfa_expression => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa.register = undefined;
self.current_row.cfa.rule = .{
.expression = i.block,
};
},
.expression => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.expression = i.block,
};
},
.val_offset => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor,
};
},
.val_offset_sf => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_offset = i.offset * cie.data_alignment_factor,
};
},
.val_expression => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_expression = i.block,
};
},
}
return prev_row;
}
};
|