aboutsummaryrefslogtreecommitdiff
path: root/lib/std/debug/SelfInfo/MachO.zig
blob: a89a2f0fb5a399e624d6e437d863674d51399403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
mutex: std.Thread.Mutex,
/// Accessed through `Module.Adapter`.
modules: std.ArrayHashMapUnmanaged(Module, void, Module.Context, false),
ofiles: std.StringArrayHashMapUnmanaged(?OFile),

pub const init: SelfInfo = .{
    .mutex = .{},
    .modules = .empty,
    .ofiles = .empty,
};
pub fn deinit(si: *SelfInfo, gpa: Allocator) void {
    for (si.modules.keys()) |*module| {
        unwind: {
            const u = &(module.unwind orelse break :unwind catch break :unwind);
            if (u.dwarf) |*dwarf| dwarf.deinit(gpa);
        }
        loaded: {
            const l = &(module.loaded_macho orelse break :loaded catch break :loaded);
            gpa.free(l.symbols);
            posix.munmap(l.mapped_memory);
        }
    }
    for (si.ofiles.values()) |*opt_ofile| {
        const ofile = &(opt_ofile.* orelse continue);
        ofile.dwarf.deinit(gpa);
        ofile.symbols_by_name.deinit(gpa);
        posix.munmap(ofile.mapped_memory);
    }
    si.modules.deinit(gpa);
    si.ofiles.deinit(gpa);
}

pub fn getSymbol(si: *SelfInfo, gpa: Allocator, address: usize) Error!std.debug.Symbol {
    const module = try si.findModule(gpa, address);
    defer si.mutex.unlock();

    const loaded_macho = try module.getLoadedMachO(gpa);

    const vaddr = address - loaded_macho.vaddr_offset;
    const symbol = MachoSymbol.find(loaded_macho.symbols, vaddr) orelse return .unknown;

    // offset of `address` from start of `symbol`
    const address_symbol_offset = vaddr - symbol.addr;

    // Take the symbol name from the N_FUN STAB entry, we're going to
    // use it if we fail to find the DWARF infos
    const stab_symbol = mem.sliceTo(loaded_macho.strings[symbol.strx..], 0);

    // If any information is missing, we can at least return this from now on.
    const sym_only_result: std.debug.Symbol = .{
        .name = stab_symbol,
        .compile_unit_name = null,
        .source_location = null,
    };

    if (symbol.ofile == MachoSymbol.unknown_ofile) {
        // We don't have STAB info, so can't track down the object file; all we can do is the symbol name.
        return sym_only_result;
    }

    const o_file: *OFile = of: {
        const path = mem.sliceTo(loaded_macho.strings[symbol.ofile..], 0);
        const gop = try si.ofiles.getOrPut(gpa, path);
        if (!gop.found_existing) {
            gop.value_ptr.* = loadOFile(gpa, path) catch null;
        }
        if (gop.value_ptr.*) |*o_file| {
            break :of o_file;
        } else {
            return sym_only_result;
        }
    };

    const symbol_index = o_file.symbols_by_name.getKeyAdapted(
        @as([]const u8, stab_symbol),
        @as(OFile.SymbolAdapter, .{ .strtab = o_file.strtab, .symtab = o_file.symtab }),
    ) orelse return sym_only_result;
    const symbol_ofile_vaddr = o_file.symtab[symbol_index].n_value;

    const compile_unit = o_file.dwarf.findCompileUnit(native_endian, symbol_ofile_vaddr) catch return sym_only_result;

    return .{
        .name = o_file.dwarf.getSymbolName(symbol_ofile_vaddr + address_symbol_offset) orelse stab_symbol,
        .compile_unit_name = compile_unit.die.getAttrString(
            &o_file.dwarf,
            native_endian,
            std.dwarf.AT.name,
            o_file.dwarf.section(.debug_str),
            compile_unit,
        ) catch |err| switch (err) {
            error.MissingDebugInfo, error.InvalidDebugInfo => null,
        },
        .source_location = o_file.dwarf.getLineNumberInfo(
            gpa,
            native_endian,
            compile_unit,
            symbol_ofile_vaddr + address_symbol_offset,
        ) catch null,
    };
}
pub fn getModuleName(si: *SelfInfo, gpa: Allocator, address: usize) Error![]const u8 {
    const module = try si.findModule(gpa, address);
    defer si.mutex.unlock();
    return module.name;
}

pub const can_unwind: bool = true;
pub const UnwindContext = std.debug.Dwarf.SelfUnwinder;
/// Unwind a frame using MachO compact unwind info (from `__unwind_info`).
/// If the compact encoding can't encode a way to unwind a frame, it will
/// defer unwinding to DWARF, in which case `__eh_frame` will be used if available.
pub fn unwindFrame(si: *SelfInfo, gpa: Allocator, context: *UnwindContext) Error!usize {
    return unwindFrameInner(si, gpa, context) catch |err| switch (err) {
        error.InvalidDebugInfo,
        error.MissingDebugInfo,
        error.UnsupportedDebugInfo,
        error.ReadFailed,
        error.OutOfMemory,
        error.Unexpected,
        => |e| return e,
        error.UnsupportedRegister,
        error.UnsupportedAddrSize,
        error.UnimplementedUserOpcode,
        => return error.UnsupportedDebugInfo,
        error.Overflow,
        error.EndOfStream,
        error.StreamTooLong,
        error.InvalidOpcode,
        error.InvalidOperation,
        error.InvalidOperand,
        error.InvalidRegister,
        error.IncompatibleRegisterSize,
        => return error.InvalidDebugInfo,
    };
}
fn unwindFrameInner(si: *SelfInfo, gpa: Allocator, context: *UnwindContext) !usize {
    const module = try si.findModule(gpa, context.pc);
    defer si.mutex.unlock();

    const unwind: *Module.Unwind = try module.getUnwindInfo(gpa);

    const ip_reg_num = comptime Dwarf.ipRegNum(builtin.target.cpu.arch).?;
    const fp_reg_num = comptime Dwarf.fpRegNum(builtin.target.cpu.arch);
    const sp_reg_num = comptime Dwarf.spRegNum(builtin.target.cpu.arch);

    const unwind_info = unwind.unwind_info orelse return error.MissingDebugInfo;
    if (unwind_info.len < @sizeOf(macho.unwind_info_section_header)) return error.InvalidDebugInfo;
    const header: *align(1) const macho.unwind_info_section_header = @ptrCast(unwind_info);

    const index_byte_count = header.indexCount * @sizeOf(macho.unwind_info_section_header_index_entry);
    if (unwind_info.len < header.indexSectionOffset + index_byte_count) return error.InvalidDebugInfo;
    const indices: []align(1) const macho.unwind_info_section_header_index_entry = @ptrCast(unwind_info[header.indexSectionOffset..][0..index_byte_count]);
    if (indices.len == 0) return error.MissingDebugInfo;

    // offset of the PC into the `__TEXT` segment
    const pc_text_offset = context.pc - module.text_base;

    const start_offset: u32, const first_level_offset: u32 = index: {
        var left: usize = 0;
        var len: usize = indices.len;
        while (len > 1) {
            const mid = left + len / 2;
            if (pc_text_offset < indices[mid].functionOffset) {
                len /= 2;
            } else {
                left = mid;
                len -= len / 2;
            }
        }
        break :index .{ indices[left].secondLevelPagesSectionOffset, indices[left].functionOffset };
    };
    // An offset of 0 is a sentinel indicating a range does not have unwind info.
    if (start_offset == 0) return error.MissingDebugInfo;

    const common_encodings_byte_count = header.commonEncodingsArrayCount * @sizeOf(macho.compact_unwind_encoding_t);
    if (unwind_info.len < header.commonEncodingsArraySectionOffset + common_encodings_byte_count) return error.InvalidDebugInfo;
    const common_encodings: []align(1) const macho.compact_unwind_encoding_t = @ptrCast(
        unwind_info[header.commonEncodingsArraySectionOffset..][0..common_encodings_byte_count],
    );

    if (unwind_info.len < start_offset + @sizeOf(macho.UNWIND_SECOND_LEVEL)) return error.InvalidDebugInfo;
    const kind: *align(1) const macho.UNWIND_SECOND_LEVEL = @ptrCast(unwind_info[start_offset..]);

    const entry: struct {
        function_offset: usize,
        raw_encoding: u32,
    } = switch (kind.*) {
        .REGULAR => entry: {
            if (unwind_info.len < start_offset + @sizeOf(macho.unwind_info_regular_second_level_page_header)) return error.InvalidDebugInfo;
            const page_header: *align(1) const macho.unwind_info_regular_second_level_page_header = @ptrCast(unwind_info[start_offset..]);

            const entries_byte_count = page_header.entryCount * @sizeOf(macho.unwind_info_regular_second_level_entry);
            if (unwind_info.len < start_offset + entries_byte_count) return error.InvalidDebugInfo;
            const entries: []align(1) const macho.unwind_info_regular_second_level_entry = @ptrCast(
                unwind_info[start_offset + page_header.entryPageOffset ..][0..entries_byte_count],
            );
            if (entries.len == 0) return error.InvalidDebugInfo;

            var left: usize = 0;
            var len: usize = entries.len;
            while (len > 1) {
                const mid = left + len / 2;
                if (pc_text_offset < entries[mid].functionOffset) {
                    len /= 2;
                } else {
                    left = mid;
                    len -= len / 2;
                }
            }
            break :entry .{
                .function_offset = entries[left].functionOffset,
                .raw_encoding = entries[left].encoding,
            };
        },
        .COMPRESSED => entry: {
            if (unwind_info.len < start_offset + @sizeOf(macho.unwind_info_compressed_second_level_page_header)) return error.InvalidDebugInfo;
            const page_header: *align(1) const macho.unwind_info_compressed_second_level_page_header = @ptrCast(unwind_info[start_offset..]);

            const entries_byte_count = page_header.entryCount * @sizeOf(macho.UnwindInfoCompressedEntry);
            if (unwind_info.len < start_offset + entries_byte_count) return error.InvalidDebugInfo;
            const entries: []align(1) const macho.UnwindInfoCompressedEntry = @ptrCast(
                unwind_info[start_offset + page_header.entryPageOffset ..][0..entries_byte_count],
            );
            if (entries.len == 0) return error.InvalidDebugInfo;

            var left: usize = 0;
            var len: usize = entries.len;
            while (len > 1) {
                const mid = left + len / 2;
                if (pc_text_offset < first_level_offset + entries[mid].funcOffset) {
                    len /= 2;
                } else {
                    left = mid;
                    len -= len / 2;
                }
            }
            const entry = entries[left];

            const function_offset = first_level_offset + entry.funcOffset;
            if (entry.encodingIndex < common_encodings.len) {
                break :entry .{
                    .function_offset = function_offset,
                    .raw_encoding = common_encodings[entry.encodingIndex],
                };
            }

            const local_index = entry.encodingIndex - common_encodings.len;
            const local_encodings_byte_count = page_header.encodingsCount * @sizeOf(macho.compact_unwind_encoding_t);
            if (unwind_info.len < start_offset + page_header.encodingsPageOffset + local_encodings_byte_count) return error.InvalidDebugInfo;
            const local_encodings: []align(1) const macho.compact_unwind_encoding_t = @ptrCast(
                unwind_info[start_offset + page_header.encodingsPageOffset ..][0..local_encodings_byte_count],
            );
            if (local_index >= local_encodings.len) return error.InvalidDebugInfo;
            break :entry .{
                .function_offset = function_offset,
                .raw_encoding = local_encodings[local_index],
            };
        },
        else => return error.InvalidDebugInfo,
    };

    if (entry.raw_encoding == 0) return error.MissingDebugInfo;

    const encoding: macho.CompactUnwindEncoding = @bitCast(entry.raw_encoding);
    const new_ip = switch (builtin.cpu.arch) {
        .x86_64 => switch (encoding.mode.x86_64) {
            .OLD => return error.UnsupportedDebugInfo,
            .RBP_FRAME => ip: {
                const frame = encoding.value.x86_64.frame;

                const fp = (try dwarfRegNative(&context.cpu_state, fp_reg_num)).*;
                const new_sp = fp + 2 * @sizeOf(usize);

                const ip_ptr = fp + @sizeOf(usize);
                const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
                const new_fp = @as(*const usize, @ptrFromInt(fp)).*;

                (try dwarfRegNative(&context.cpu_state, fp_reg_num)).* = new_fp;
                (try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
                (try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;

                const regs: [5]u3 = .{
                    frame.reg0,
                    frame.reg1,
                    frame.reg2,
                    frame.reg3,
                    frame.reg4,
                };
                for (regs, 0..) |reg, i| {
                    if (reg == 0) continue;
                    const addr = fp - frame.frame_offset * @sizeOf(usize) + i * @sizeOf(usize);
                    const reg_number = try Dwarf.compactUnwindToDwarfRegNumber(reg);
                    (try dwarfRegNative(&context.cpu_state, reg_number)).* = @as(*const usize, @ptrFromInt(addr)).*;
                }

                break :ip new_ip;
            },
            .STACK_IMMD,
            .STACK_IND,
            => ip: {
                const frameless = encoding.value.x86_64.frameless;

                const sp = (try dwarfRegNative(&context.cpu_state, sp_reg_num)).*;
                const stack_size: usize = stack_size: {
                    if (encoding.mode.x86_64 == .STACK_IMMD) {
                        break :stack_size @as(usize, frameless.stack.direct.stack_size) * @sizeOf(usize);
                    }
                    // In .STACK_IND, the stack size is inferred from the subq instruction at the beginning of the function.
                    const sub_offset_addr =
                        module.text_base +
                        entry.function_offset +
                        frameless.stack.indirect.sub_offset;
                    // `sub_offset_addr` points to the offset of the literal within the instruction
                    const sub_operand = @as(*align(1) const u32, @ptrFromInt(sub_offset_addr)).*;
                    break :stack_size sub_operand + @sizeOf(usize) * @as(usize, frameless.stack.indirect.stack_adjust);
                };

                // Decode the Lehmer-coded sequence of registers.
                // For a description of the encoding see lib/libc/include/any-macos.13-any/mach-o/compact_unwind_encoding.h

                // Decode the variable-based permutation number into its digits. Each digit represents
                // an index into the list of register numbers that weren't yet used in the sequence at
                // the time the digit was added.
                const reg_count = frameless.stack_reg_count;
                const ip_ptr = ip_ptr: {
                    var digits: [6]u3 = undefined;
                    var accumulator: usize = frameless.stack_reg_permutation;
                    var base: usize = 2;
                    for (0..reg_count) |i| {
                        const div = accumulator / base;
                        digits[digits.len - 1 - i] = @intCast(accumulator - base * div);
                        accumulator = div;
                        base += 1;
                    }

                    var registers: [6]u3 = undefined;
                    var used_indices: [6]bool = @splat(false);
                    for (digits[digits.len - reg_count ..], 0..) |target_unused_index, i| {
                        var unused_count: u8 = 0;
                        const unused_index = for (used_indices, 0..) |used, index| {
                            if (!used) {
                                if (target_unused_index == unused_count) break index;
                                unused_count += 1;
                            }
                        } else unreachable;
                        registers[i] = @intCast(unused_index + 1);
                        used_indices[unused_index] = true;
                    }

                    var reg_addr = sp + stack_size - @sizeOf(usize) * @as(usize, reg_count + 1);
                    for (0..reg_count) |i| {
                        const reg_number = try Dwarf.compactUnwindToDwarfRegNumber(registers[i]);
                        (try dwarfRegNative(&context.cpu_state, reg_number)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
                        reg_addr += @sizeOf(usize);
                    }

                    break :ip_ptr reg_addr;
                };

                const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
                const new_sp = ip_ptr + @sizeOf(usize);

                (try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
                (try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;

                break :ip new_ip;
            },
            .DWARF => {
                const dwarf = &(unwind.dwarf orelse return error.MissingDebugInfo);
                const rules = try context.computeRules(gpa, dwarf, unwind.vmaddr_slide, encoding.value.x86_64.dwarf);
                return context.next(gpa, &rules);
            },
        },
        .aarch64 => switch (encoding.mode.arm64) {
            .OLD => return error.UnsupportedDebugInfo,
            .FRAMELESS => ip: {
                const sp = (try dwarfRegNative(&context.cpu_state, sp_reg_num)).*;
                const new_sp = sp + encoding.value.arm64.frameless.stack_size * 16;
                const new_ip = (try dwarfRegNative(&context.cpu_state, 30)).*;
                (try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
                break :ip new_ip;
            },
            .DWARF => {
                const dwarf = &(unwind.dwarf orelse return error.MissingDebugInfo);
                const rules = try context.computeRules(gpa, dwarf, unwind.vmaddr_slide, encoding.value.arm64.dwarf);
                return context.next(gpa, &rules);
            },
            .FRAME => ip: {
                const frame = encoding.value.arm64.frame;

                const fp = (try dwarfRegNative(&context.cpu_state, fp_reg_num)).*;
                const ip_ptr = fp + @sizeOf(usize);

                var reg_addr = fp - @sizeOf(usize);
                inline for (@typeInfo(@TypeOf(frame.x_reg_pairs)).@"struct".fields, 0..) |field, i| {
                    if (@field(frame.x_reg_pairs, field.name) != 0) {
                        (try dwarfRegNative(&context.cpu_state, 19 + i)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
                        reg_addr += @sizeOf(usize);
                        (try dwarfRegNative(&context.cpu_state, 20 + i)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
                        reg_addr += @sizeOf(usize);
                    }
                }

                // We intentionally skip restoring `frame.d_reg_pairs`; we know we don't support
                // vector registers in the AArch64 `cpu_context` anyway, so there's no reason to
                // fail a legitimate unwind just because we're asked to restore the registers here.
                // If some weird/broken unwind info tells us to read them later, we will fail then.
                reg_addr += 16 * @as(usize, @popCount(@as(u4, @bitCast(frame.d_reg_pairs))));

                const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
                const new_fp = @as(*const usize, @ptrFromInt(fp)).*;

                (try dwarfRegNative(&context.cpu_state, fp_reg_num)).* = new_fp;
                (try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;

                break :ip new_ip;
            },
        },
        else => comptime unreachable, // unimplemented
    };

    const ret_addr = std.debug.stripInstructionPtrAuthCode(new_ip);

    // Like `Dwarf.SelfUnwinder.next`, adjust our next lookup pc in case the `call` was this
    // function's last instruction making `ret_addr` one byte past its end.
    context.pc = ret_addr -| 1;

    return ret_addr;
}

/// Acquires the mutex on success.
fn findModule(si: *SelfInfo, gpa: Allocator, address: usize) Error!*Module {
    var info: std.c.dl_info = undefined;
    if (std.c.dladdr(@ptrFromInt(address), &info) == 0) {
        return error.MissingDebugInfo;
    }
    si.mutex.lock();
    errdefer si.mutex.unlock();
    const gop = try si.modules.getOrPutAdapted(gpa, @intFromPtr(info.fbase), Module.Adapter{});
    errdefer comptime unreachable;
    if (!gop.found_existing) {
        gop.key_ptr.* = .{
            .text_base = @intFromPtr(info.fbase),
            .name = std.mem.span(info.fname),
            .unwind = null,
            .loaded_macho = null,
        };
    }
    return gop.key_ptr;
}

const Module = struct {
    text_base: usize,
    name: []const u8,
    unwind: ?(Error!Unwind),
    loaded_macho: ?(Error!LoadedMachO),

    const Adapter = struct {
        pub fn hash(_: Adapter, text_base: usize) u32 {
            return @truncate(std.hash.int(text_base));
        }
        pub fn eql(_: Adapter, a_text_base: usize, b_module: Module, b_index: usize) bool {
            _ = b_index;
            return a_text_base == b_module.text_base;
        }
    };
    const Context = struct {
        pub fn hash(_: Context, module: Module) u32 {
            return @truncate(std.hash.int(module.text_base));
        }
        pub fn eql(_: Context, a_module: Module, b_module: Module, b_index: usize) bool {
            _ = b_index;
            return a_module.text_base == b_module.text_base;
        }
    };

    const Unwind = struct {
        /// The slide applied to the `__unwind_info` and `__eh_frame` sections.
        /// So, `unwind_info.ptr` is this many bytes higher than the section's vmaddr.
        vmaddr_slide: u64,
        /// Backed by the in-memory section mapped by the loader.
        unwind_info: ?[]const u8,
        /// Backed by the in-memory `__eh_frame` section mapped by the loader.
        dwarf: ?Dwarf.Unwind,
    };

    const LoadedMachO = struct {
        mapped_memory: []align(std.heap.page_size_min) const u8,
        symbols: []const MachoSymbol,
        strings: []const u8,
        /// This is not necessarily the same as the vmaddr_slide that dyld would report. This is
        /// because the segments in the file on disk might differ from the ones in memory. Normally
        /// we wouldn't necessarily expect that to work, but /usr/lib/dyld is incredibly annoying:
        /// it exists on disk (necessarily, because the kernel needs to load it!), but is also in
        /// the dyld cache (dyld actually restart itself from cache after loading it), and the two
        /// versions have (very) different segment base addresses. It's sort of like a large slide
        /// has been applied to all addresses in memory. For an optimal experience, we consider the
        /// on-disk vmaddr instead of the in-memory one.
        vaddr_offset: usize,
    };

    fn getUnwindInfo(module: *Module, gpa: Allocator) Error!*Unwind {
        if (module.unwind == null) module.unwind = loadUnwindInfo(module, gpa);
        return if (module.unwind.?) |*unwind| unwind else |err| err;
    }
    fn loadUnwindInfo(module: *const Module, gpa: Allocator) Error!Unwind {
        const header: *std.macho.mach_header = @ptrFromInt(module.text_base);

        var it: macho.LoadCommandIterator = .{
            .ncmds = header.ncmds,
            .buffer = @as([*]u8, @ptrCast(header))[@sizeOf(macho.mach_header_64)..][0..header.sizeofcmds],
        };
        const sections, const text_vmaddr = while (it.next()) |load_cmd| {
            if (load_cmd.cmd() != .SEGMENT_64) continue;
            const segment_cmd = load_cmd.cast(macho.segment_command_64).?;
            if (!mem.eql(u8, segment_cmd.segName(), "__TEXT")) continue;
            break .{ load_cmd.getSections(), segment_cmd.vmaddr };
        } else unreachable;

        const vmaddr_slide = module.text_base - text_vmaddr;

        var opt_unwind_info: ?[]const u8 = null;
        var opt_eh_frame: ?[]const u8 = null;
        for (sections) |sect| {
            if (mem.eql(u8, sect.sectName(), "__unwind_info")) {
                const sect_ptr: [*]u8 = @ptrFromInt(@as(usize, @intCast(vmaddr_slide + sect.addr)));
                opt_unwind_info = sect_ptr[0..@intCast(sect.size)];
            } else if (mem.eql(u8, sect.sectName(), "__eh_frame")) {
                const sect_ptr: [*]u8 = @ptrFromInt(@as(usize, @intCast(vmaddr_slide + sect.addr)));
                opt_eh_frame = sect_ptr[0..@intCast(sect.size)];
            }
        }
        const eh_frame = opt_eh_frame orelse return .{
            .vmaddr_slide = vmaddr_slide,
            .unwind_info = opt_unwind_info,
            .dwarf = null,
        };
        var dwarf: Dwarf.Unwind = .initSection(.eh_frame, @intFromPtr(eh_frame.ptr) - vmaddr_slide, eh_frame);
        errdefer dwarf.deinit(gpa);
        // We don't need lookups, so this call is just for scanning CIEs.
        dwarf.prepare(gpa, @sizeOf(usize), native_endian, false, true) catch |err| switch (err) {
            error.ReadFailed => unreachable, // it's all fixed buffers
            error.InvalidDebugInfo,
            error.MissingDebugInfo,
            error.OutOfMemory,
            => |e| return e,
            error.EndOfStream,
            error.Overflow,
            error.StreamTooLong,
            error.InvalidOperand,
            error.InvalidOpcode,
            error.InvalidOperation,
            => return error.InvalidDebugInfo,
            error.UnsupportedAddrSize,
            error.UnsupportedDwarfVersion,
            error.UnimplementedUserOpcode,
            => return error.UnsupportedDebugInfo,
        };

        return .{
            .vmaddr_slide = vmaddr_slide,
            .unwind_info = opt_unwind_info,
            .dwarf = dwarf,
        };
    }

    fn getLoadedMachO(module: *Module, gpa: Allocator) Error!*LoadedMachO {
        if (module.loaded_macho == null) module.loaded_macho = loadMachO(module, gpa) catch |err| switch (err) {
            error.InvalidDebugInfo, error.MissingDebugInfo, error.OutOfMemory, error.Unexpected => |e| e,
            else => error.ReadFailed,
        };
        return if (module.loaded_macho.?) |*lm| lm else |err| err;
    }
    fn loadMachO(module: *const Module, gpa: Allocator) Error!LoadedMachO {
        const all_mapped_memory = try mapDebugInfoFile(module.name);
        errdefer posix.munmap(all_mapped_memory);

        // In most cases, the file we just mapped is a Mach-O binary. However, it could be a "universal
        // binary": a simple file format which contains Mach-O binaries for multiple targets. For
        // instance, `/usr/lib/dyld` is currently distributed as a universal binary containing images
        // for both ARM64 macOS and x86_64 macOS.
        if (all_mapped_memory.len < 4) return error.InvalidDebugInfo;
        const magic = @as(*const u32, @ptrCast(all_mapped_memory.ptr)).*;
        // The contents of a Mach-O file, which may or may not be the whole of `all_mapped_memory`.
        const mapped_macho = switch (magic) {
            macho.MH_MAGIC_64 => all_mapped_memory,

            macho.FAT_CIGAM => mapped_macho: {
                // This is the universal binary format (aka a "fat binary"). Annoyingly, the whole thing
                // is big-endian, so we'll be swapping some bytes.
                if (all_mapped_memory.len < @sizeOf(macho.fat_header)) return error.InvalidDebugInfo;
                const hdr: *const macho.fat_header = @ptrCast(all_mapped_memory.ptr);
                const archs_ptr: [*]const macho.fat_arch = @ptrCast(all_mapped_memory.ptr + @sizeOf(macho.fat_header));
                const archs: []const macho.fat_arch = archs_ptr[0..@byteSwap(hdr.nfat_arch)];
                const native_cpu_type = switch (builtin.cpu.arch) {
                    .x86_64 => macho.CPU_TYPE_X86_64,
                    .aarch64 => macho.CPU_TYPE_ARM64,
                    else => comptime unreachable,
                };
                for (archs) |*arch| {
                    if (@byteSwap(arch.cputype) != native_cpu_type) continue;
                    const offset = @byteSwap(arch.offset);
                    const size = @byteSwap(arch.size);
                    break :mapped_macho all_mapped_memory[offset..][0..size];
                }
                // Our native architecture was not present in the fat binary.
                return error.MissingDebugInfo;
            },

            // Even on modern 64-bit targets, this format doesn't seem to be too extensively used. It
            // will be fairly easy to add support here if necessary; it's very similar to above.
            macho.FAT_CIGAM_64 => return error.UnsupportedDebugInfo,

            else => return error.InvalidDebugInfo,
        };

        const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_macho.ptr));
        if (hdr.magic != macho.MH_MAGIC_64)
            return error.InvalidDebugInfo;

        const symtab: macho.symtab_command, const text_vmaddr: u64 = lc_iter: {
            var it: macho.LoadCommandIterator = .{
                .ncmds = hdr.ncmds,
                .buffer = mapped_macho[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
            };
            var symtab: ?macho.symtab_command = null;
            var text_vmaddr: ?u64 = null;
            while (it.next()) |cmd| switch (cmd.cmd()) {
                .SYMTAB => symtab = cmd.cast(macho.symtab_command) orelse return error.InvalidDebugInfo,
                .SEGMENT_64 => if (cmd.cast(macho.segment_command_64)) |seg_cmd| {
                    if (!mem.eql(u8, seg_cmd.segName(), "__TEXT")) continue;
                    text_vmaddr = seg_cmd.vmaddr;
                },
                else => {},
            };
            break :lc_iter .{
                symtab orelse return error.MissingDebugInfo,
                text_vmaddr orelse return error.MissingDebugInfo,
            };
        };

        const syms_ptr: [*]align(1) const macho.nlist_64 = @ptrCast(mapped_macho[symtab.symoff..]);
        const syms = syms_ptr[0..symtab.nsyms];
        const strings = mapped_macho[symtab.stroff..][0 .. symtab.strsize - 1];

        var symbols: std.ArrayList(MachoSymbol) = try .initCapacity(gpa, syms.len);
        defer symbols.deinit(gpa);

        // This map is temporary; it is used only to detect duplicates here. This is
        // necessary because we prefer to use STAB ("symbolic debugging table") symbols,
        // but they might not be present, so we track normal symbols too.
        // Indices match 1-1 with those of `symbols`.
        var symbol_names: std.StringArrayHashMapUnmanaged(void) = .empty;
        defer symbol_names.deinit(gpa);
        try symbol_names.ensureUnusedCapacity(gpa, syms.len);

        var ofile: u32 = undefined;
        var last_sym: MachoSymbol = undefined;
        var state: enum {
            init,
            oso_open,
            oso_close,
            bnsym,
            fun_strx,
            fun_size,
            ensym,
        } = .init;

        for (syms) |*sym| {
            if (sym.n_type.bits.is_stab == 0) {
                if (sym.n_strx == 0) continue;
                switch (sym.n_type.bits.type) {
                    .undf, .pbud, .indr, .abs, _ => continue,
                    .sect => {
                        const name = std.mem.sliceTo(strings[sym.n_strx..], 0);
                        const gop = symbol_names.getOrPutAssumeCapacity(name);
                        if (!gop.found_existing) {
                            assert(gop.index == symbols.items.len);
                            symbols.appendAssumeCapacity(.{
                                .strx = sym.n_strx,
                                .addr = sym.n_value,
                                .ofile = MachoSymbol.unknown_ofile,
                            });
                        }
                    },
                }
                continue;
            }

            // TODO handle globals N_GSYM, and statics N_STSYM
            switch (sym.n_type.stab) {
                .oso => switch (state) {
                    .init, .oso_close => {
                        state = .oso_open;
                        ofile = sym.n_strx;
                    },
                    else => return error.InvalidDebugInfo,
                },
                .bnsym => switch (state) {
                    .oso_open, .ensym => {
                        state = .bnsym;
                        last_sym = .{
                            .strx = 0,
                            .addr = sym.n_value,
                            .ofile = ofile,
                        };
                    },
                    else => return error.InvalidDebugInfo,
                },
                .fun => switch (state) {
                    .bnsym => {
                        state = .fun_strx;
                        last_sym.strx = sym.n_strx;
                    },
                    .fun_strx => {
                        state = .fun_size;
                    },
                    else => return error.InvalidDebugInfo,
                },
                .ensym => switch (state) {
                    .fun_size => {
                        state = .ensym;
                        if (last_sym.strx != 0) {
                            const name = std.mem.sliceTo(strings[last_sym.strx..], 0);
                            const gop = symbol_names.getOrPutAssumeCapacity(name);
                            if (!gop.found_existing) {
                                assert(gop.index == symbols.items.len);
                                symbols.appendAssumeCapacity(last_sym);
                            } else {
                                symbols.items[gop.index] = last_sym;
                            }
                        }
                    },
                    else => return error.InvalidDebugInfo,
                },
                .so => switch (state) {
                    .init, .oso_close => {},
                    .oso_open, .ensym => {
                        state = .oso_close;
                    },
                    else => return error.InvalidDebugInfo,
                },
                else => {},
            }
        }

        switch (state) {
            .init => {
                // Missing STAB symtab entries is still okay, unless there were also no normal symbols.
                if (symbols.items.len == 0) return error.MissingDebugInfo;
            },
            .oso_close => {},
            else => return error.InvalidDebugInfo, // corrupted STAB entries in symtab
        }

        const symbols_slice = try symbols.toOwnedSlice(gpa);
        errdefer gpa.free(symbols_slice);

        // Even though lld emits symbols in ascending order, this debug code
        // should work for programs linked in any valid way.
        // This sort is so that we can binary search later.
        mem.sort(MachoSymbol, symbols_slice, {}, MachoSymbol.addressLessThan);

        return .{
            .mapped_memory = all_mapped_memory,
            .symbols = symbols_slice,
            .strings = strings,
            .vaddr_offset = module.text_base - text_vmaddr,
        };
    }
};

const OFile = struct {
    mapped_memory: []align(std.heap.page_size_min) const u8,
    dwarf: Dwarf,
    strtab: []const u8,
    symtab: []align(1) const macho.nlist_64,
    /// All named symbols in `symtab`. Stored `u32` key is the index into `symtab`. Accessed
    /// through `SymbolAdapter`, so that the symbol name is used as the logical key.
    symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true),

    const SymbolAdapter = struct {
        strtab: []const u8,
        symtab: []align(1) const macho.nlist_64,
        pub fn hash(ctx: SymbolAdapter, sym_name: []const u8) u32 {
            _ = ctx;
            return @truncate(std.hash.Wyhash.hash(0, sym_name));
        }
        pub fn eql(ctx: SymbolAdapter, a_sym_name: []const u8, b_sym_index: u32, b_index: usize) bool {
            _ = b_index;
            const b_sym = ctx.symtab[b_sym_index];
            const b_sym_name = std.mem.sliceTo(ctx.strtab[b_sym.n_strx..], 0);
            return mem.eql(u8, a_sym_name, b_sym_name);
        }
    };
};

const MachoSymbol = struct {
    strx: u32,
    addr: u64,
    /// Value may be `unknown_ofile`.
    ofile: u32,
    const unknown_ofile = std.math.maxInt(u32);
    fn addressLessThan(context: void, lhs: MachoSymbol, rhs: MachoSymbol) bool {
        _ = context;
        return lhs.addr < rhs.addr;
    }
    /// Assumes that `symbols` is sorted in order of ascending `addr`.
    fn find(symbols: []const MachoSymbol, address: usize) ?*const MachoSymbol {
        if (symbols.len == 0) return null; // no potential match
        if (address < symbols[0].addr) return null; // address is before the lowest-address symbol
        var left: usize = 0;
        var len: usize = symbols.len;
        while (len > 1) {
            const mid = left + len / 2;
            if (address < symbols[mid].addr) {
                len /= 2;
            } else {
                left = mid;
                len -= len / 2;
            }
        }
        return &symbols[left];
    }

    test find {
        const symbols: []const MachoSymbol = &.{
            .{ .addr = 100, .strx = undefined, .ofile = undefined },
            .{ .addr = 200, .strx = undefined, .ofile = undefined },
            .{ .addr = 300, .strx = undefined, .ofile = undefined },
        };

        try testing.expectEqual(null, find(symbols, 0));
        try testing.expectEqual(null, find(symbols, 99));
        try testing.expectEqual(&symbols[0], find(symbols, 100).?);
        try testing.expectEqual(&symbols[0], find(symbols, 150).?);
        try testing.expectEqual(&symbols[0], find(symbols, 199).?);

        try testing.expectEqual(&symbols[1], find(symbols, 200).?);
        try testing.expectEqual(&symbols[1], find(symbols, 250).?);
        try testing.expectEqual(&symbols[1], find(symbols, 299).?);

        try testing.expectEqual(&symbols[2], find(symbols, 300).?);
        try testing.expectEqual(&symbols[2], find(symbols, 301).?);
        try testing.expectEqual(&symbols[2], find(symbols, 5000).?);
    }
};
test {
    _ = MachoSymbol;
}

/// Uses `mmap` to map the file at `path` into memory.
fn mapDebugInfoFile(path: []const u8) ![]align(std.heap.page_size_min) const u8 {
    const file = std.fs.cwd().openFile(path, .{}) catch |err| switch (err) {
        error.FileNotFound => return error.MissingDebugInfo,
        else => return error.ReadFailed,
    };
    defer file.close();

    const file_end_pos = file.getEndPos() catch |err| switch (err) {
        error.Unexpected => |e| return e,
        else => return error.ReadFailed,
    };
    const file_len = std.math.cast(usize, file_end_pos) orelse return error.InvalidDebugInfo;

    return posix.mmap(
        null,
        file_len,
        posix.PROT.READ,
        .{ .TYPE = .SHARED },
        file.handle,
        0,
    ) catch |err| switch (err) {
        error.Unexpected => |e| return e,
        else => return error.ReadFailed,
    };
}

fn loadOFile(gpa: Allocator, o_file_path: []const u8) !OFile {
    const mapped_mem = try mapDebugInfoFile(o_file_path);
    errdefer posix.munmap(mapped_mem);

    if (mapped_mem.len < @sizeOf(macho.mach_header_64)) return error.InvalidDebugInfo;
    const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_mem.ptr));
    if (hdr.magic != std.macho.MH_MAGIC_64) return error.InvalidDebugInfo;

    const seg_cmd: macho.LoadCommandIterator.LoadCommand, const symtab_cmd: macho.symtab_command = cmds: {
        var seg_cmd: ?macho.LoadCommandIterator.LoadCommand = null;
        var symtab_cmd: ?macho.symtab_command = null;
        var it: macho.LoadCommandIterator = .{
            .ncmds = hdr.ncmds,
            .buffer = mapped_mem[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
        };
        while (it.next()) |cmd| switch (cmd.cmd()) {
            .SEGMENT_64 => seg_cmd = cmd,
            .SYMTAB => symtab_cmd = cmd.cast(macho.symtab_command) orelse return error.InvalidDebugInfo,
            else => {},
        };
        break :cmds .{
            seg_cmd orelse return error.MissingDebugInfo,
            symtab_cmd orelse return error.MissingDebugInfo,
        };
    };

    if (mapped_mem.len < symtab_cmd.stroff + symtab_cmd.strsize) return error.InvalidDebugInfo;
    if (mapped_mem[symtab_cmd.stroff + symtab_cmd.strsize - 1] != 0) return error.InvalidDebugInfo;
    const strtab = mapped_mem[symtab_cmd.stroff..][0 .. symtab_cmd.strsize - 1];

    const n_sym_bytes = symtab_cmd.nsyms * @sizeOf(macho.nlist_64);
    if (mapped_mem.len < symtab_cmd.symoff + n_sym_bytes) return error.InvalidDebugInfo;
    const symtab: []align(1) const macho.nlist_64 = @ptrCast(mapped_mem[symtab_cmd.symoff..][0..n_sym_bytes]);

    // TODO handle tentative (common) symbols
    var symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true) = .empty;
    defer symbols_by_name.deinit(gpa);
    try symbols_by_name.ensureUnusedCapacity(gpa, @intCast(symtab.len));
    for (symtab, 0..) |sym, sym_index| {
        if (sym.n_strx == 0) continue;
        switch (sym.n_type.bits.type) {
            .undf => continue, // includes tentative symbols
            .abs => continue,
            else => {},
        }
        const sym_name = mem.sliceTo(strtab[sym.n_strx..], 0);
        const gop = symbols_by_name.getOrPutAssumeCapacityAdapted(
            @as([]const u8, sym_name),
            @as(OFile.SymbolAdapter, .{ .strtab = strtab, .symtab = symtab }),
        );
        if (gop.found_existing) return error.InvalidDebugInfo;
        gop.key_ptr.* = @intCast(sym_index);
    }

    var sections: Dwarf.SectionArray = @splat(null);
    for (seg_cmd.getSections()) |sect| {
        if (!std.mem.eql(u8, "__DWARF", sect.segName())) continue;

        const section_index: usize = inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields, 0..) |section, i| {
            if (mem.eql(u8, "__" ++ section.name, sect.sectName())) break i;
        } else continue;

        if (mapped_mem.len < sect.offset + sect.size) return error.InvalidDebugInfo;
        const section_bytes = mapped_mem[sect.offset..][0..sect.size];
        sections[section_index] = .{
            .data = section_bytes,
            .owned = false,
        };
    }

    const missing_debug_info =
        sections[@intFromEnum(Dwarf.Section.Id.debug_info)] == null or
        sections[@intFromEnum(Dwarf.Section.Id.debug_abbrev)] == null or
        sections[@intFromEnum(Dwarf.Section.Id.debug_str)] == null or
        sections[@intFromEnum(Dwarf.Section.Id.debug_line)] == null;
    if (missing_debug_info) return error.MissingDebugInfo;

    var dwarf: Dwarf = .{ .sections = sections };
    errdefer dwarf.deinit(gpa);
    try dwarf.open(gpa, native_endian);

    return .{
        .mapped_memory = mapped_mem,
        .dwarf = dwarf,
        .strtab = strtab,
        .symtab = symtab,
        .symbols_by_name = symbols_by_name.move(),
    };
}

const std = @import("std");
const Allocator = std.mem.Allocator;
const Dwarf = std.debug.Dwarf;
const Error = std.debug.SelfInfoError;
const assert = std.debug.assert;
const posix = std.posix;
const macho = std.macho;
const mem = std.mem;
const testing = std.testing;
const dwarfRegNative = std.debug.Dwarf.SelfUnwinder.regNative;

const builtin = @import("builtin");
const native_endian = builtin.target.cpu.arch.endian();

const SelfInfo = @This();