aboutsummaryrefslogtreecommitdiff
path: root/lib/std/debug/Dwarf/Unwind.zig
blob: 2eaa89c40425c0f13def7a31a67490dfe54e32c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
//! Contains state relevant to stack unwinding through the DWARF `.debug_frame` section, or the
//! `.eh_frame` section which is an extension of the former specified by Linux Standard Base Core.
//! Like `Dwarf`, no assumptions are made about the host's relationship to the target of the unwind
//! information -- unwind data for any target can be read by any host.
//!
//! `Unwind` specifically deals with loading the data from CIEs and FDEs in the section, and with
//! performing fast lookups of a program counter's corresponding FDE. The CFI instructions in the
//! CIEs and FDEs can be interpreted by `VirtualMachine`.
//!
//! The typical usage of `Unwind` is as follows:
//!
//! * Initialize with `initEhFrameHdr` or `initSection`, depending on the available data
//! * Call `prepareLookup` to construct a search table if necessary
//! * Call `lookupPc` to find the section offset of the FDE corresponding to a PC
//! * Call `getFde` to load the corresponding FDE and CIE
//! * Check that the PC does indeed fall in that range (`lookupPc` may return a false positive)
//! * Interpret the embedded CFI instructions using `VirtualMachine`
//!
//! In some cases, such as when using the "compact unwind" data in Mach-O binaries, the FDE offsets
//! may already be known. In that case, no call to `lookupPc` is necessary, which means the call to
//! `prepareLookup` can also be omitted.

pub const VirtualMachine = @import("Unwind/VirtualMachine.zig");

frame_section: struct {
    id: Section,
    /// The virtual address of the start of the section. "Virtual address" refers to the address in
    /// the binary (e.g. `sh_addr` in an ELF file); the equivalent runtime address may be relocated
    /// in position-independent binaries.
    vaddr: u64,
    /// The full contents of the section. May have imprecise bounds depending on `section`. This
    /// memory is externally managed.
    ///
    /// For `.debug_frame`, the slice length is exactly equal to the section length. This is needed
    /// to know the number of CIEs and FDEs.
    ///
    /// For `.eh_frame`, the slice length may exceed the section length, i.e. the slice may refer to
    /// more bytes than are in the second. This restriction exists because `.eh_frame_hdr` only
    /// includes the address of the loaded `.eh_frame` data, not its length. It is not a problem
    /// because unlike `.debug_frame`, the end of the CIE/FDE list is signaled through a sentinel
    /// value. If this slice does have bounds, they will still be checked, preventing crashes when
    /// reading potentially-invalid `.eh_frame` data from files.
    bytes: []const u8,
},

/// A structure allowing fast lookups of the FDE corresponding to a particular PC. We use a binary
/// search table for the lookup; essentially, a list of all FDEs ordered by PC range. `null` means
/// the lookup data is not yet populated, so `prepareLookup` must be called before `lookupPc`.
lookup: ?union(enum) {
    /// The `.eh_frame_hdr` section contains a pre-computed search table which we can use.
    eh_frame_hdr: struct {
        /// Virtual address of the `.eh_frame_hdr` section.
        vaddr: u64,
        table: EhFrameHeader.SearchTable,
    },
    /// There is no pre-computed search table, so we have built one ourselves.
    /// Allocated into `gpa` and freed by `deinit`.
    sorted_fdes: []SortedFdeEntry,
},

const SortedFdeEntry = struct {
    /// This FDE's value of `pc_begin`.
    pc_begin: u64,
    /// Offset into the section of the corresponding FDE, including the entry header.
    fde_offset: u64,
};

pub const Section = enum { debug_frame, eh_frame };

/// Initialize with unwind information from a header loaded from an `.eh_frame_hdr` section, and a
/// pointer to the contents of the `.eh_frame` section.
///
/// `.eh_frame_hdr` may embed a binary search table of FDEs. If it does, we will use that table for
/// PC lookups rather than spending time constructing our own search table.
pub fn initEhFrameHdr(header: EhFrameHeader, section_vaddr: u64, section_bytes_ptr: [*]const u8) Unwind {
    return .{
        .frame_section = .{
            .id = .eh_frame,
            .bytes = maxSlice(section_bytes_ptr),
            .vaddr = header.eh_frame_vaddr,
        },
        .lookup = if (header.search_table) |table| .{ .eh_frame_hdr = .{
            .vaddr = section_vaddr,
            .table = table,
        } } else null,
    };
}

/// Initialize with unwind information from the contents of a `.debug_frame` or `.eh_frame` section.
///
/// If the `.eh_frame_hdr` section is available, consider instead using `initEhFrameHdr`, which
/// allows the implementation to use a search table embedded in that section if it is available.
pub fn initSection(section: Section, section_vaddr: u64, section_bytes: []const u8) Unwind {
    return .{
        .frame_section = .{
            .id = section,
            .bytes = section_bytes,
            .vaddr = section_vaddr,
        },
        .lookup = null,
    };
}

/// Technically, it is only necessary to call this if `prepareLookup` has previously been called,
/// since no other function here allocates resources.
pub fn deinit(unwind: *Unwind, gpa: Allocator) void {
    if (unwind.lookup) |lookup| switch (lookup) {
        .eh_frame_hdr => {},
        .sorted_fdes => |fdes| gpa.free(fdes),
    };
}

/// Decoded version of the `.eh_frame_hdr` section.
pub const EhFrameHeader = struct {
    /// The virtual address (i.e. as given in the binary, before relocations) of the `.eh_frame`
    /// section. This value is important when using `.eh_frame_hdr` to find debug information for
    /// the current binary, because it allows locating where the `.eh_frame` section is loaded in
    /// memory (by adding it to the ELF module's base address).
    eh_frame_vaddr: u64,
    search_table: ?SearchTable,

    pub const SearchTable = struct {
        /// The byte offset of the search table into the `.eh_frame_hdr` section.
        offset: u8,
        encoding: EH.PE,
        fde_count: usize,
        /// The actual table entries are viewed as a plain byte slice because `encoding` causes the
        /// size of entries in the table to vary.
        entries: []const u8,

        /// Returns the vaddr of the FDE for `pc`, or `null` if no matching FDE was found.
        fn findEntry(
            table: *const SearchTable,
            eh_frame_hdr_vaddr: u64,
            pc: u64,
            addr_size_bytes: u8,
            endian: Endian,
        ) !?u64 {
            const table_vaddr = eh_frame_hdr_vaddr + table.offset;
            const entry_size = try entrySize(table.encoding, addr_size_bytes);
            var left: usize = 0;
            var len: usize = table.fde_count;
            while (len > 1) {
                const mid = left + len / 2;
                var entry_reader: Reader = .fixed(table.entries[mid * entry_size ..][0..entry_size]);
                const pc_begin = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{
                    .pc_rel_base = table_vaddr + left * entry_size,
                    .data_rel_base = eh_frame_hdr_vaddr,
                }, endian);
                if (pc < pc_begin) {
                    len /= 2;
                } else {
                    left = mid;
                    len -= len / 2;
                }
            }
            if (len == 0) return null;
            var entry_reader: Reader = .fixed(table.entries[left * entry_size ..][0..entry_size]);
            // Skip past `pc_begin`; we're now interested in the fde offset
            _ = try readEhPointerAbs(&entry_reader, table.encoding.type, addr_size_bytes, endian);
            const fde_ptr = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{
                .pc_rel_base = table_vaddr + left * entry_size,
                .data_rel_base = eh_frame_hdr_vaddr,
            }, endian);
            return fde_ptr;
        }

        fn entrySize(table_enc: EH.PE, addr_size_bytes: u8) !u8 {
            return switch (table_enc.type) {
                .absptr => 2 * addr_size_bytes,
                .udata2, .sdata2 => 4,
                .udata4, .sdata4 => 8,
                .udata8, .sdata8 => 16,
                .uleb128, .sleb128 => return bad(), // this is a binary search table; all entries must be the same size
                _ => return bad(),
            };
        }
    };

    pub fn parse(
        eh_frame_hdr_vaddr: u64,
        eh_frame_hdr_bytes: []const u8,
        addr_size_bytes: u8,
        endian: Endian,
    ) !EhFrameHeader {
        var r: Reader = .fixed(eh_frame_hdr_bytes);

        const version = try r.takeByte();
        if (version != 1) return bad();

        const eh_frame_ptr_enc: EH.PE = @bitCast(try r.takeByte());
        const fde_count_enc: EH.PE = @bitCast(try r.takeByte());
        const table_enc: EH.PE = @bitCast(try r.takeByte());

        const eh_frame_ptr = try readEhPointer(&r, eh_frame_ptr_enc, addr_size_bytes, .{
            .pc_rel_base = eh_frame_hdr_vaddr + r.seek,
        }, endian);

        const table: ?SearchTable = table: {
            if (fde_count_enc == EH.PE.omit) break :table null;
            if (table_enc == EH.PE.omit) break :table null;
            const fde_count = try readEhPointer(&r, fde_count_enc, addr_size_bytes, .{
                .pc_rel_base = eh_frame_hdr_vaddr + r.seek,
            }, endian);
            const entry_size = try SearchTable.entrySize(table_enc, addr_size_bytes);
            const bytes_offset = r.seek;
            const bytes_len = cast(usize, fde_count * entry_size) orelse return error.EndOfStream;
            const bytes = try r.take(bytes_len);
            break :table .{
                .encoding = table_enc,
                .fde_count = @intCast(fde_count),
                .entries = bytes,
                .offset = @intCast(bytes_offset),
            };
        };

        return .{
            .eh_frame_vaddr = eh_frame_ptr,
            .search_table = table,
        };
    }
};

/// The shared header of an FDE/CIE, containing a length in bytes (DWARF's "initial length field")
/// and a value which differentiates CIEs from FDEs and maps FDEs to their corresponding CIEs. The
/// `.eh_frame` format also includes a third variation, here called `.terminator`, which acts as a
/// sentinel for the whole section.
///
/// `CommonInformationEntry.parse` and `FrameDescriptionEntry.parse` expect the `EntryHeader` to
/// have been parsed first: they accept data stored in the `EntryHeader`, and only read the bytes
/// following this header.
const EntryHeader = union(enum) {
    cie: struct {
        format: Format,
        /// Remaining bytes in the CIE. These are parseable by `CommonInformationEntry.parse`.
        bytes_len: u64,
    },
    fde: struct {
        format: Format,
        /// Offset into the section of the corresponding CIE, *including* its entry header.
        cie_offset: u64,
        /// Remaining bytes in the FDE. These are parseable by `FrameDescriptionEntry.parse`.
        bytes_len: u64,
    },
    /// The `.eh_frame` format includes terminators which indicate that the last CIE/FDE has been
    /// reached. However, `.debug_frame` does not include such a terminator, so the caller must
    /// keep track of how many section bytes remain when parsing all entries in `.debug_frame`.
    terminator,

    fn read(r: *Reader, header_section_offset: u64, section: Section, endian: Endian) !EntryHeader {
        const unit_header = try Dwarf.readUnitHeader(r, endian);
        if (unit_header.unit_length == 0) return .terminator;

        // Next is a value which will disambiguate CIEs and FDEs. Annoyingly, LSB Core makes this
        // value always 4-byte, whereas DWARF makes it depend on the `dwarf.Format`.
        const cie_ptr_or_id_size: u8 = switch (section) {
            .eh_frame => 4,
            .debug_frame => switch (unit_header.format) {
                .@"32" => 4,
                .@"64" => 8,
            },
        };
        const cie_ptr_or_id = switch (cie_ptr_or_id_size) {
            4 => try r.takeInt(u32, endian),
            8 => try r.takeInt(u64, endian),
            else => unreachable,
        };
        const remaining_bytes = unit_header.unit_length - cie_ptr_or_id_size;

        // If this entry is a CIE, then `cie_ptr_or_id` will have this value, which is different
        // between the DWARF `.debug_frame` section and the LSB Core `.eh_frame` section.
        const cie_id: u64 = switch (section) {
            .eh_frame => 0,
            .debug_frame => switch (unit_header.format) {
                .@"32" => maxInt(u32),
                .@"64" => maxInt(u64),
            },
        };
        if (cie_ptr_or_id == cie_id) {
            return .{ .cie = .{
                .format = unit_header.format,
                .bytes_len = remaining_bytes,
            } };
        }

        // This is an FDE -- `cie_ptr_or_id` points to the associated CIE. Unfortunately, the format
        // of that pointer again differs between `.debug_frame` and `.eh_frame`.
        const cie_offset = switch (section) {
            .eh_frame => try std.math.sub(u64, header_section_offset + unit_header.header_length, cie_ptr_or_id),
            .debug_frame => cie_ptr_or_id,
        };
        return .{ .fde = .{
            .format = unit_header.format,
            .cie_offset = cie_offset,
            .bytes_len = remaining_bytes,
        } };
    }
};

pub const CommonInformationEntry = struct {
    version: u8,

    /// In version 4, CIEs can specify the address size used in the CIE and associated FDEs.
    /// This value must be used *only* to parse associated FDEs in `FrameDescriptionEntry.parse`.
    addr_size_bytes: u8,

    /// Always 0 for versions which do not specify this (currently all versions other than 4).
    segment_selector_size: u8,

    code_alignment_factor: u32,
    data_alignment_factor: i32,
    return_address_register: u8,

    fde_pointer_enc: EH.PE,
    is_signal_frame: bool,

    augmentation_kind: AugmentationKind,

    initial_instructions: []const u8,

    pub const AugmentationKind = enum { none, gcc_eh, lsb_z };

    /// This function expects to read the CIE starting with the version field.
    /// The returned struct references memory backed by `cie_bytes`.
    ///
    /// `length_offset` specifies the offset of this CIE's length field in the
    /// .eh_frame / .debug_frame section.
    fn parse(
        cie_bytes: []const u8,
        section: Section,
        default_addr_size_bytes: u8,
    ) !CommonInformationEntry {
        // We only read the data through this reader.
        var r: Reader = .fixed(cie_bytes);

        const version = try r.takeByte();
        switch (section) {
            .eh_frame => if (version != 1 and version != 3) return error.UnsupportedDwarfVersion,
            .debug_frame => if (version != 4) return error.UnsupportedDwarfVersion,
        }

        const aug_str = try r.takeSentinel(0);
        const aug_kind: AugmentationKind = aug: {
            if (aug_str.len == 0) break :aug .none;
            if (aug_str[0] == 'z') break :aug .lsb_z;
            if (std.mem.eql(u8, aug_str, "eh")) break :aug .gcc_eh;
            // We can't finish parsing the CIE if we don't know what its augmentation means.
            return bad();
        };

        switch (aug_kind) {
            .none => {}, // no extra data
            .lsb_z => {}, // no extra data yet, but there is a bit later
            .gcc_eh => try r.discardAll(default_addr_size_bytes), // unsupported data
        }

        const addr_size_bytes = if (version == 4) try r.takeByte() else default_addr_size_bytes;
        const segment_selector_size: u8 = if (version == 4) try r.takeByte() else 0;
        const code_alignment_factor = try r.takeLeb128(u32);
        const data_alignment_factor = try r.takeLeb128(i32);
        const return_address_register = if (version == 1) try r.takeByte() else try r.takeLeb128(u8);

        // This is where LSB's augmentation might add some data.
        const fde_pointer_enc: EH.PE, const is_signal_frame: bool = aug: {
            const default_fde_pointer_enc: EH.PE = .{ .type = .absptr, .rel = .abs };
            if (aug_kind != .lsb_z) break :aug .{ default_fde_pointer_enc, false };
            const aug_data_len = try r.takeLeb128(u32);
            var aug_data: Reader = .fixed(try r.take(aug_data_len));
            var fde_pointer_enc: EH.PE = default_fde_pointer_enc;
            var is_signal_frame = false;
            for (aug_str[1..]) |byte| switch (byte) {
                'L' => _ = try aug_data.takeByte(), // we ignore the LSDA pointer
                'P' => {
                    const enc: EH.PE = @bitCast(try aug_data.takeByte());
                    const endian: Endian = .little; // irrelevant because we're discarding the value anyway
                    _ = try readEhPointerAbs(&r, enc.type, addr_size_bytes, endian); // we ignore the personality routine; endianness is irrelevant since we're discarding
                },
                'R' => fde_pointer_enc = @bitCast(try aug_data.takeByte()),
                'S' => is_signal_frame = true,
                'B', 'G' => {},
                else => return bad(),
            };
            break :aug .{ fde_pointer_enc, is_signal_frame };
        };

        return .{
            .version = version,
            .addr_size_bytes = addr_size_bytes,
            .segment_selector_size = segment_selector_size,
            .code_alignment_factor = code_alignment_factor,
            .data_alignment_factor = data_alignment_factor,
            .return_address_register = return_address_register,
            .fde_pointer_enc = fde_pointer_enc,
            .is_signal_frame = is_signal_frame,
            .augmentation_kind = aug_kind,
            .initial_instructions = r.buffered(),
        };
    }
};

pub const FrameDescriptionEntry = struct {
    pc_begin: u64,
    pc_range: u64,
    instructions: []const u8,

    /// This function expects to read the FDE starting at the PC Begin field.
    /// The returned struct references memory backed by `fde_bytes`.
    fn parse(
        /// The virtual address of the FDE we're parsing, *excluding* its entry header (i.e. the
        /// address is after the header). If `fde_bytes` is backed by the memory of a loaded
        /// module's `.eh_frame` section, this will equal `fde_bytes.ptr`.
        fde_vaddr: u64,
        fde_bytes: []const u8,
        cie: CommonInformationEntry,
        endian: Endian,
    ) !FrameDescriptionEntry {
        if (cie.segment_selector_size != 0) return error.UnsupportedAddrSize;

        var r: Reader = .fixed(fde_bytes);

        const pc_begin = try readEhPointer(&r, cie.fde_pointer_enc, cie.addr_size_bytes, .{
            .pc_rel_base = fde_vaddr,
        }, endian);

        // I swear I'm not kidding when I say that PC Range is encoded with `cie.fde_pointer_enc`, but ignoring `rel`.
        const pc_range = switch (try readEhPointerAbs(&r, cie.fde_pointer_enc.type, cie.addr_size_bytes, endian)) {
            .unsigned => |x| x,
            .signed => |x| cast(u64, x) orelse return bad(),
        };

        switch (cie.augmentation_kind) {
            .none, .gcc_eh => {},
            .lsb_z => {
                // There is augmentation data, but it's irrelevant to us -- it
                // only contains the LSDA pointer, which we don't care about.
                const aug_data_len = try r.takeLeb128(usize);
                _ = try r.discardAll(aug_data_len);
            },
        }

        return .{
            .pc_begin = pc_begin,
            .pc_range = pc_range,
            .instructions = r.buffered(),
        };
    }
};

/// Builds the PC FDE lookup table if it is not already built. It is required to call this function
/// at least once before calling `lookupPc`. Once this function is called, memory has been allocated
/// and so `deinit` (matching this `gpa`) is required to free it.
pub fn prepareLookup(unwind: *Unwind, gpa: Allocator, addr_size_bytes: u8, endian: Endian) !void {
    if (unwind.lookup != null) return;

    const section = unwind.frame_section;

    var r: Reader = .fixed(section.bytes);
    var fde_list: std.ArrayList(SortedFdeEntry) = .empty;
    defer fde_list.deinit(gpa);

    const saw_terminator = while (r.seek < r.buffer.len) {
        const entry_offset = r.seek;
        switch (try EntryHeader.read(&r, entry_offset, section.id, endian)) {
            .cie => |cie_info| {
                // Ignore CIEs for now; we'll parse them when we read a corresponding FDE
                try r.discardAll(cast(usize, cie_info.bytes_len) orelse return error.EndOfStream);
                continue;
            },
            .fde => |fde_info| {
                if (fde_info.cie_offset > section.bytes.len) return error.EndOfStream;
                var cie_r: Reader = .fixed(section.bytes[@intCast(fde_info.cie_offset)..]);
                const cie_info = switch (try EntryHeader.read(&cie_r, fde_info.cie_offset, section.id, endian)) {
                    .cie => |cie_info| cie_info,
                    .fde, .terminator => return bad(), // this is meant to be a CIE
                };
                const cie_bytes_len = cast(usize, cie_info.bytes_len) orelse return error.EndOfStream;
                const fde_bytes_len = cast(usize, fde_info.bytes_len) orelse return error.EndOfStream;
                const cie: CommonInformationEntry = try .parse(try cie_r.take(cie_bytes_len), section.id, addr_size_bytes);
                const fde: FrameDescriptionEntry = try .parse(section.vaddr + r.seek, try r.take(fde_bytes_len), cie, endian);
                try fde_list.append(gpa, .{
                    .pc_begin = fde.pc_begin,
                    .fde_offset = entry_offset,
                });
            },
            .terminator => break true,
        }
    } else false;
    switch (section.id) {
        .eh_frame => if (!saw_terminator) return bad(), // `.eh_frame` indicates the end of the CIE/FDE list with a sentinel entry
        .debug_frame => if (saw_terminator) return bad(), // `.debug_frame` uses the section bounds and does not specify a sentinel entry
    }

    std.mem.sortUnstable(SortedFdeEntry, fde_list.items, {}, struct {
        fn lessThan(ctx: void, a: SortedFdeEntry, b: SortedFdeEntry) bool {
            ctx;
            return a.pc_begin < b.pc_begin;
        }
    }.lessThan);

    // This temporary is necessary to avoid an RLS footgun where `lookup` ends up non-null `undefined` on OOM.
    const final_fdes = try fde_list.toOwnedSlice(gpa);
    unwind.lookup = .{ .sorted_fdes = final_fdes };
}

/// Given a program counter value, returns the offset of the corresponding FDE, or `null` if no
/// matching FDE was found. The returned offset can be passed to `getFde` to load the data
/// associated with the FDE.
///
/// Before calling this function, `prepareLookup` must return successfully at least once, to ensure
/// that `unwind.lookup` is populated.
///
/// The return value may be a false positive. After loading the FDE with `loadFde`, the caller must
/// validate that `pc` is indeed in its range -- if it is not, then no FDE matches `pc`.
pub fn lookupPc(unwind: *const Unwind, pc: u64, addr_size_bytes: u8, endian: Endian) !?u64 {
    const sorted_fdes: []const SortedFdeEntry = switch (unwind.lookup.?) {
        .eh_frame_hdr => |eh_frame_hdr| {
            const fde_vaddr = try eh_frame_hdr.table.findEntry(
                eh_frame_hdr.vaddr,
                pc,
                addr_size_bytes,
                endian,
            ) orelse return null;
            return std.math.sub(u64, fde_vaddr, unwind.frame_section.vaddr) catch bad(); // convert vaddr to offset
        },
        .sorted_fdes => |sorted_fdes| sorted_fdes,
    };
    const first_bad_idx = std.sort.partitionPoint(SortedFdeEntry, sorted_fdes, pc, struct {
        fn canIncludePc(target_pc: u64, entry: SortedFdeEntry) bool {
            return target_pc >= entry.pc_begin; // i.e. does 'entry_pc..<last pc>' include 'target_pc'
        }
    }.canIncludePc);
    // `first_bad_idx` is the index of the first FDE whose `pc_begin` is too high to include `pc`.
    // So if any FDE matches, it'll be the one at `first_bad_idx - 1` (maybe false positive).
    if (first_bad_idx == 0) return null;
    return sorted_fdes[first_bad_idx - 1].fde_offset;
}

/// Get the FDE at a given offset, as well as its associated CIE. This offset typically comes from
/// `lookupPc`. The CFI instructions within can be evaluated with `VirtualMachine`.
pub fn getFde(unwind: *const Unwind, fde_offset: u64, addr_size_bytes: u8, endian: Endian) !struct { Format, CommonInformationEntry, FrameDescriptionEntry } {
    const section = unwind.frame_section;

    if (fde_offset > section.bytes.len) return error.EndOfStream;
    var fde_reader: Reader = .fixed(section.bytes[@intCast(fde_offset)..]);
    const fde_info = switch (try EntryHeader.read(&fde_reader, fde_offset, section.id, endian)) {
        .fde => |info| info,
        .cie, .terminator => return bad(), // This is meant to be an FDE
    };

    const cie_offset = fde_info.cie_offset;
    if (cie_offset > section.bytes.len) return error.EndOfStream;
    var cie_reader: Reader = .fixed(section.bytes[@intCast(cie_offset)..]);
    const cie_info = switch (try EntryHeader.read(&cie_reader, cie_offset, section.id, endian)) {
        .cie => |info| info,
        .fde, .terminator => return bad(), // This is meant to be a CIE
    };

    const cie: CommonInformationEntry = try .parse(
        try cie_reader.take(cast(usize, cie_info.bytes_len) orelse return error.EndOfStream),
        section.id,
        addr_size_bytes,
    );
    const fde: FrameDescriptionEntry = try .parse(
        section.vaddr + fde_offset + fde_reader.seek,
        try fde_reader.take(cast(usize, fde_info.bytes_len) orelse return error.EndOfStream),
        cie,
        endian,
    );

    return .{ cie_info.format, cie, fde };
}

const EhPointerContext = struct {
    /// The address of the pointer field itself
    pc_rel_base: u64,
    // These relative addressing modes are only used in specific cases, and
    // might not be available / required in all parsing contexts
    data_rel_base: ?u64 = null,
    text_rel_base: ?u64 = null,
    function_rel_base: ?u64 = null,
};
/// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`.
fn readEhPointerAbs(r: *Reader, enc_ty: EH.PE.Type, addr_size_bytes: u8, endian: Endian) !union(enum) {
    signed: i64,
    unsigned: u64,
} {
    return switch (enc_ty) {
        .absptr => .{
            .unsigned = switch (addr_size_bytes) {
                2 => try r.takeInt(u16, endian),
                4 => try r.takeInt(u32, endian),
                8 => try r.takeInt(u64, endian),
                else => return error.UnsupportedAddrSize,
            },
        },
        .uleb128 => .{ .unsigned = try r.takeLeb128(u64) },
        .udata2 => .{ .unsigned = try r.takeInt(u16, endian) },
        .udata4 => .{ .unsigned = try r.takeInt(u32, endian) },
        .udata8 => .{ .unsigned = try r.takeInt(u64, endian) },
        .sleb128 => .{ .signed = try r.takeLeb128(i64) },
        .sdata2 => .{ .signed = try r.takeInt(i16, endian) },
        .sdata4 => .{ .signed = try r.takeInt(i32, endian) },
        .sdata8 => .{ .signed = try r.takeInt(i64, endian) },
        else => return bad(),
    };
}
/// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`.
fn readEhPointer(r: *Reader, enc: EH.PE, addr_size_bytes: u8, ctx: EhPointerContext, endian: Endian) !u64 {
    const offset = try readEhPointerAbs(r, enc.type, addr_size_bytes, endian);
    if (enc.indirect) return bad(); // GCC extension; not supported
    const base: u64 = switch (enc.rel) {
        .abs, .aligned => 0,
        .pcrel => ctx.pc_rel_base,
        .textrel => ctx.text_rel_base orelse return bad(),
        .datarel => ctx.data_rel_base orelse return bad(),
        .funcrel => ctx.function_rel_base orelse return bad(),
        _ => return bad(),
    };
    return switch (offset) {
        .signed => |s| if (s >= 0)
            try std.math.add(u64, base, @intCast(s))
        else
            try std.math.sub(u64, base, @intCast(-s)),
        // absptr can actually contain signed values in some cases (aarch64 MachO)
        .unsigned => |u| u +% base,
    };
}

/// Like `Reader.fixed`, but when the length of the data is unknown and we just want to allow
/// reading indefinitely.
fn maxSlice(ptr: [*]const u8) []const u8 {
    const len = std.math.maxInt(usize) - @intFromPtr(ptr);
    return ptr[0..len];
}

const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const bad = Dwarf.bad;
const cast = std.math.cast;
const DW = std.dwarf;
const Dwarf = std.debug.Dwarf;
const EH = DW.EH;
const Endian = std.builtin.Endian;
const Format = DW.Format;
const maxInt = std.math.maxInt;
const missing = Dwarf.missing;
const Reader = std.Io.Reader;
const std = @import("std");
const Unwind = @This();