aboutsummaryrefslogtreecommitdiff
path: root/lib/std/crypto/scrypt.zig
blob: 9b2bf01022aa43fd120bc433ee85d9aadf42402b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// https://tools.ietf.org/html/rfc7914
// https://github.com/golang/crypto/blob/master/scrypt/scrypt.go
// https://github.com/Tarsnap/scrypt

const std = @import("std");
const crypto = std.crypto;
const fmt = std.fmt;
const io = std.io;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const pwhash = crypto.pwhash;

const phc_format = @import("phc_encoding.zig");

const HmacSha256 = crypto.auth.hmac.sha2.HmacSha256;
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;

const max_size = math.maxInt(usize);
const max_int = max_size >> 1;
const default_salt_len = 32;
const default_hash_len = 32;
const max_salt_len = 64;
const max_hash_len = 64;

fn blockCopy(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
    mem.copy(u32, dst, src[0 .. n * 16]);
}

fn blockXor(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
    for (src[0 .. n * 16]) |v, i| {
        dst[i] ^= v;
    }
}

const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6 };

fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
    return QuarterRound{ .a = a, .b = b, .c = c, .d = d };
}

fn salsa8core(b: *align(16) [16]u32) void {
    const arx_steps = comptime [_]QuarterRound{
        Rp(4, 0, 12, 7),   Rp(8, 4, 0, 9),    Rp(12, 8, 4, 13),   Rp(0, 12, 8, 18),
        Rp(9, 5, 1, 7),    Rp(13, 9, 5, 9),   Rp(1, 13, 9, 13),   Rp(5, 1, 13, 18),
        Rp(14, 10, 6, 7),  Rp(2, 14, 10, 9),  Rp(6, 2, 14, 13),   Rp(10, 6, 2, 18),
        Rp(3, 15, 11, 7),  Rp(7, 3, 15, 9),   Rp(11, 7, 3, 13),   Rp(15, 11, 7, 18),
        Rp(1, 0, 3, 7),    Rp(2, 1, 0, 9),    Rp(3, 2, 1, 13),    Rp(0, 3, 2, 18),
        Rp(6, 5, 4, 7),    Rp(7, 6, 5, 9),    Rp(4, 7, 6, 13),    Rp(5, 4, 7, 18),
        Rp(11, 10, 9, 7),  Rp(8, 11, 10, 9),  Rp(9, 8, 11, 13),   Rp(10, 9, 8, 18),
        Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
    };
    var x = b.*;
    var j: usize = 0;
    while (j < 8) : (j += 2) {
        inline for (arx_steps) |r| {
            x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
        }
    }
    j = 0;
    while (j < 16) : (j += 1) {
        b[j] +%= x[j];
    }
}

fn salsaXor(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32) void {
    blockXor(tmp, in, 1);
    salsa8core(tmp);
    blockCopy(out, tmp, 1);
}

fn blockMix(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32, r: u30) void {
    blockCopy(tmp, @alignCast(16, in[(2 * r - 1) * 16 ..]), 1);
    var i: usize = 0;
    while (i < 2 * r) : (i += 2) {
        salsaXor(tmp, @alignCast(16, in[i * 16 ..]), @alignCast(16, out[i * 8 ..]));
        salsaXor(tmp, @alignCast(16, in[i * 16 + 16 ..]), @alignCast(16, out[i * 8 + r * 16 ..]));
    }
}

fn integerify(b: []align(16) const u32, r: u30) u64 {
    const j = (2 * r - 1) * 16;
    return @as(u64, b[j]) | @as(u64, b[j + 1]) << 32;
}

fn smix(b: []align(16) u8, r: u30, n: usize, v: []align(16) u32, xy: []align(16) u32) void {
    var x = @alignCast(16, xy[0 .. 32 * r]);
    var y = @alignCast(16, xy[32 * r ..]);

    for (x) |*v1, j| {
        v1.* = mem.readIntSliceLittle(u32, b[4 * j ..]);
    }

    var tmp: [16]u32 align(16) = undefined;
    var i: usize = 0;
    while (i < n) : (i += 2) {
        blockCopy(@alignCast(16, v[i * (32 * r) ..]), x, 2 * r);
        blockMix(&tmp, x, y, r);

        blockCopy(@alignCast(16, v[(i + 1) * (32 * r) ..]), y, 2 * r);
        blockMix(&tmp, y, x, r);
    }

    i = 0;
    while (i < n) : (i += 2) {
        var j = @intCast(usize, integerify(x, r) & (n - 1));
        blockXor(x, @alignCast(16, v[j * (32 * r) ..]), 2 * r);
        blockMix(&tmp, x, y, r);

        j = @intCast(usize, integerify(y, r) & (n - 1));
        blockXor(y, @alignCast(16, v[j * (32 * r) ..]), 2 * r);
        blockMix(&tmp, y, x, r);
    }

    for (x) |v1, j| {
        mem.writeIntLittle(u32, b[4 * j ..][0..4], v1);
    }
}

/// Scrypt parameters
pub const Params = struct {
    const Self = @This();

    /// The CPU/Memory cost parameter [ln] is log2(N).
    ln: u6,

    /// The [r]esource usage parameter specifies the block size.
    r: u30,

    /// The [p]arallelization parameter.
    /// A large value of [p] can be used to increase the computational cost of scrypt without
    /// increasing the memory usage.
    p: u30,

    /// Baseline parameters for interactive logins
    pub const interactive = Self.fromLimits(524288, 16777216);

    /// Baseline parameters for offline usage
    pub const sensitive = Self.fromLimits(33554432, 1073741824);

    /// Create parameters from ops and mem limits, where mem_limit given in bytes
    pub fn fromLimits(ops_limit: u64, mem_limit: usize) Self {
        const ops = math.max(32768, ops_limit);
        const r: u30 = 8;
        if (ops < mem_limit / 32) {
            const max_n = ops / (r * 4);
            return Self{ .r = r, .p = 1, .ln = @intCast(u6, math.log2(max_n)) };
        } else {
            const max_n = mem_limit / (@intCast(usize, r) * 128);
            const ln = @intCast(u6, math.log2(max_n));
            const max_rp = math.min(0x3fffffff, (ops / 4) / (@as(u64, 1) << ln));
            return Self{ .r = r, .p = @intCast(u30, max_rp / @as(u64, r)), .ln = ln };
        }
    }
};

/// Apply scrypt to generate a key from a password.
///
/// scrypt is defined in RFC 7914.
///
/// allocator: mem.Allocator.
///
/// derived_key: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length.
///              May be uninitialized. All bytes will be overwritten.
///              Maximum size is `derived_key.len / 32 == 0xffff_ffff`.
///
/// password: Arbitrary sequence of bytes of any length.
///
/// salt: Arbitrary sequence of bytes of any length.
///
/// params: Params.
pub fn kdf(
    allocator: mem.Allocator,
    derived_key: []u8,
    password: []const u8,
    salt: []const u8,
    params: Params,
) KdfError!void {
    if (derived_key.len == 0) return KdfError.WeakParameters;
    if (derived_key.len / 32 > 0xffff_ffff) return KdfError.OutputTooLong;
    if (params.ln == 0 or params.r == 0 or params.p == 0) return KdfError.WeakParameters;

    const n64 = @as(u64, 1) << params.ln;
    if (n64 > max_size) return KdfError.WeakParameters;
    const n = @intCast(usize, n64);
    if (@as(u64, params.r) * @as(u64, params.p) >= 1 << 30 or
        params.r > max_int / 128 / @as(u64, params.p) or
        params.r > max_int / 256 or
        n > max_int / 128 / @as(u64, params.r)) return KdfError.WeakParameters;

    var xy = try allocator.alignedAlloc(u32, 16, 64 * params.r);
    defer allocator.free(xy);
    var v = try allocator.alignedAlloc(u32, 16, 32 * n * params.r);
    defer allocator.free(v);
    var dk = try allocator.alignedAlloc(u8, 16, params.p * 128 * params.r);
    defer allocator.free(dk);

    try pwhash.pbkdf2(dk, password, salt, 1, HmacSha256);
    var i: u32 = 0;
    while (i < params.p) : (i += 1) {
        smix(@alignCast(16, dk[i * 128 * params.r ..]), params.r, n, v, xy);
    }
    try pwhash.pbkdf2(derived_key, password, dk, 1, HmacSha256);
}

const crypt_format = struct {
    /// String prefix for scrypt
    pub const prefix = "$7$";

    /// Standard type for a set of scrypt parameters, with the salt and hash.
    pub fn HashResult(comptime crypt_max_hash_len: usize) type {
        return struct {
            ln: u6,
            r: u30,
            p: u30,
            salt: []const u8,
            hash: BinValue(crypt_max_hash_len),
        };
    }

    const Codec = CustomB64Codec("./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".*);

    /// A wrapped binary value whose maximum size is `max_len`.
    ///
    /// This type must be used whenever a binary value is encoded in a PHC-formatted string.
    /// This includes `salt`, `hash`, and any other binary parameters such as keys.
    ///
    /// Once initialized, the actual value can be read with the `constSlice()` function.
    pub fn BinValue(comptime max_len: usize) type {
        return struct {
            const Self = @This();
            const capacity = max_len;
            const max_encoded_length = Codec.encodedLen(max_len);

            buf: [max_len]u8 = undefined,
            len: usize = 0,

            /// Wrap an existing byte slice
            pub fn fromSlice(slice: []const u8) EncodingError!Self {
                if (slice.len > capacity) return EncodingError.NoSpaceLeft;
                var bin_value: Self = undefined;
                mem.copy(u8, &bin_value.buf, slice);
                bin_value.len = slice.len;
                return bin_value;
            }

            /// Return the slice containing the actual value.
            pub fn constSlice(self: *const Self) []const u8 {
                return self.buf[0..self.len];
            }

            fn fromB64(self: *Self, str: []const u8) !void {
                const len = Codec.decodedLen(str.len);
                if (len > self.buf.len) return EncodingError.NoSpaceLeft;
                try Codec.decode(self.buf[0..len], str);
                self.len = len;
            }

            fn toB64(self: *const Self, buf: []u8) ![]const u8 {
                const value = self.constSlice();
                const len = Codec.encodedLen(value.len);
                if (len > buf.len) return EncodingError.NoSpaceLeft;
                var encoded = buf[0..len];
                Codec.encode(encoded, value);
                return encoded;
            }
        };
    }

    /// Expand binary data into a salt for the modular crypt format.
    pub fn saltFromBin(comptime len: usize, salt: [len]u8) [Codec.encodedLen(len)]u8 {
        var buf: [Codec.encodedLen(len)]u8 = undefined;
        Codec.encode(&buf, &salt);
        return buf;
    }

    /// Deserialize a string into a structure `T` (matching `HashResult`).
    pub fn deserialize(comptime T: type, str: []const u8) EncodingError!T {
        var out: T = undefined;

        if (str.len < 16) return EncodingError.InvalidEncoding;
        if (!mem.eql(u8, prefix, str[0..3])) return EncodingError.InvalidEncoding;
        out.ln = try Codec.intDecode(u6, str[3..4]);
        out.r = try Codec.intDecode(u30, str[4..9]);
        out.p = try Codec.intDecode(u30, str[9..14]);

        var it = mem.split(u8, str[14..], "$");

        const salt = it.first();
        if (@hasField(T, "salt")) out.salt = salt;

        const hash_str = it.next() orelse return EncodingError.InvalidEncoding;
        if (@hasField(T, "hash")) try out.hash.fromB64(hash_str);

        return out;
    }

    /// Serialize parameters into a string in modular crypt format.
    pub fn serialize(params: anytype, str: []u8) EncodingError![]const u8 {
        var buf = io.fixedBufferStream(str);
        try serializeTo(params, buf.writer());
        return buf.getWritten();
    }

    /// Compute the number of bytes required to serialize `params`
    pub fn calcSize(params: anytype) usize {
        var buf = io.countingWriter(io.null_writer);
        serializeTo(params, buf.writer()) catch unreachable;
        return @intCast(usize, buf.bytes_written);
    }

    fn serializeTo(params: anytype, out: anytype) !void {
        var header: [14]u8 = undefined;
        mem.copy(u8, header[0..3], prefix);
        Codec.intEncode(header[3..4], params.ln);
        Codec.intEncode(header[4..9], params.r);
        Codec.intEncode(header[9..14], params.p);
        try out.writeAll(&header);
        try out.writeAll(params.salt);
        try out.writeAll("$");
        var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
        const hash_str = try params.hash.toB64(&buf);
        try out.writeAll(hash_str);
    }

    /// Custom codec that maps 6 bits into 8 like regular Base64, but uses its own alphabet,
    /// encodes bits in little-endian, and can also encode integers.
    fn CustomB64Codec(comptime map: [64]u8) type {
        return struct {
            const map64 = map;

            fn encodedLen(len: usize) usize {
                return (len * 4 + 2) / 3;
            }

            fn decodedLen(len: usize) usize {
                return len / 4 * 3 + (len % 4) * 3 / 4;
            }

            fn intEncode(dst: []u8, src: anytype) void {
                var n = src;
                for (dst) |*x| {
                    x.* = map64[@truncate(u6, n)];
                    n = math.shr(@TypeOf(src), n, 6);
                }
            }

            fn intDecode(comptime T: type, src: *const [(@bitSizeOf(T) + 5) / 6]u8) !T {
                var v: T = 0;
                for (src) |x, i| {
                    const vi = mem.indexOfScalar(u8, &map64, x) orelse return EncodingError.InvalidEncoding;
                    v |= @intCast(T, vi) << @intCast(math.Log2Int(T), i * 6);
                }
                return v;
            }

            fn decode(dst: []u8, src: []const u8) !void {
                std.debug.assert(dst.len == decodedLen(src.len));
                var i: usize = 0;
                while (i < src.len / 4) : (i += 1) {
                    mem.writeIntSliceLittle(u24, dst[i * 3 ..], try intDecode(u24, src[i * 4 ..][0..4]));
                }
                const leftover = src[i * 4 ..];
                var v: u24 = 0;
                for (leftover) |_, j| {
                    v |= @as(u24, try intDecode(u6, leftover[j..][0..1])) << @intCast(u5, j * 6);
                }
                for (dst[i * 3 ..]) |*x, j| {
                    x.* = @truncate(u8, v >> @intCast(u5, j * 8));
                }
            }

            fn encode(dst: []u8, src: []const u8) void {
                std.debug.assert(dst.len == encodedLen(src.len));
                var i: usize = 0;
                while (i < src.len / 3) : (i += 1) {
                    intEncode(dst[i * 4 ..][0..4], mem.readIntSliceLittle(u24, src[i * 3 ..]));
                }
                const leftover = src[i * 3 ..];
                var v: u24 = 0;
                for (leftover) |x, j| {
                    v |= @as(u24, x) << @intCast(u5, j * 8);
                }
                intEncode(dst[i * 4 ..], v);
            }
        };
    }
};

/// Hash and verify passwords using the PHC format.
const PhcFormatHasher = struct {
    const alg_id = "scrypt";
    const BinValue = phc_format.BinValue;

    const HashResult = struct {
        alg_id: []const u8,
        ln: u6,
        r: u30,
        p: u30,
        salt: BinValue(max_salt_len),
        hash: BinValue(max_hash_len),
    };

    /// Return a non-deterministic hash of the password encoded as a PHC-format string
    pub fn create(
        allocator: mem.Allocator,
        password: []const u8,
        params: Params,
        buf: []u8,
    ) HasherError![]const u8 {
        var salt: [default_salt_len]u8 = undefined;
        crypto.random.bytes(&salt);

        var hash: [default_hash_len]u8 = undefined;
        try kdf(allocator, &hash, password, &salt, params);

        return phc_format.serialize(HashResult{
            .alg_id = alg_id,
            .ln = params.ln,
            .r = params.r,
            .p = params.p,
            .salt = try BinValue(max_salt_len).fromSlice(&salt),
            .hash = try BinValue(max_hash_len).fromSlice(&hash),
        }, buf);
    }

    /// Verify a password against a PHC-format encoded string
    pub fn verify(
        allocator: mem.Allocator,
        str: []const u8,
        password: []const u8,
    ) HasherError!void {
        const hash_result = try phc_format.deserialize(HashResult, str);
        if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
        const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
        const expected_hash = hash_result.hash.constSlice();
        var hash_buf: [max_hash_len]u8 = undefined;
        if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
        var hash = hash_buf[0..expected_hash.len];
        try kdf(allocator, hash, password, hash_result.salt.constSlice(), params);
        if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
    }
};

/// Hash and verify passwords using the modular crypt format.
const CryptFormatHasher = struct {
    const BinValue = crypt_format.BinValue;
    const HashResult = crypt_format.HashResult(max_hash_len);

    /// Length of a string returned by the create() function
    pub const pwhash_str_length: usize = 101;

    /// Return a non-deterministic hash of the password encoded into the modular crypt format
    pub fn create(
        allocator: mem.Allocator,
        password: []const u8,
        params: Params,
        buf: []u8,
    ) HasherError![]const u8 {
        var salt_bin: [default_salt_len]u8 = undefined;
        crypto.random.bytes(&salt_bin);
        const salt = crypt_format.saltFromBin(salt_bin.len, salt_bin);

        var hash: [default_hash_len]u8 = undefined;
        try kdf(allocator, &hash, password, &salt, params);

        return crypt_format.serialize(HashResult{
            .ln = params.ln,
            .r = params.r,
            .p = params.p,
            .salt = &salt,
            .hash = try BinValue(max_hash_len).fromSlice(&hash),
        }, buf);
    }

    /// Verify a password against a string in modular crypt format
    pub fn verify(
        allocator: mem.Allocator,
        str: []const u8,
        password: []const u8,
    ) HasherError!void {
        const hash_result = try crypt_format.deserialize(HashResult, str);
        const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
        const expected_hash = hash_result.hash.constSlice();
        var hash_buf: [max_hash_len]u8 = undefined;
        if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
        var hash = hash_buf[0..expected_hash.len];
        try kdf(allocator, hash, password, hash_result.salt, params);
        if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
    }
};

/// Options for hashing a password.
///
/// Allocator is required for scrypt.
pub const HashOptions = struct {
    allocator: ?mem.Allocator,
    params: Params,
    encoding: pwhash.Encoding,
};

/// Compute a hash of a password using the scrypt key derivation function.
/// The function returns a string that includes all the parameters required for verification.
pub fn strHash(
    password: []const u8,
    options: HashOptions,
    out: []u8,
) Error![]const u8 {
    const allocator = options.allocator orelse return Error.AllocatorRequired;
    switch (options.encoding) {
        .phc => return PhcFormatHasher.create(allocator, password, options.params, out),
        .crypt => return CryptFormatHasher.create(allocator, password, options.params, out),
    }
}

/// Options for hash verification.
///
/// Allocator is required for scrypt.
pub const VerifyOptions = struct {
    allocator: ?mem.Allocator,
};

/// Verify that a previously computed hash is valid for a given password.
pub fn strVerify(
    str: []const u8,
    password: []const u8,
    options: VerifyOptions,
) Error!void {
    const allocator = options.allocator orelse return Error.AllocatorRequired;
    if (mem.startsWith(u8, str, crypt_format.prefix)) {
        return CryptFormatHasher.verify(allocator, str, password);
    } else {
        return PhcFormatHasher.verify(allocator, str, password);
    }
}

// These tests take way too long to run, so I have disabled them.
const run_long_tests = false;

test "kdf" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "testpass";
    const salt = "saltsalt";

    var dk: [32]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 15, .r = 8, .p = 1 });

    const hex = "1e0f97c3f6609024022fbe698da29c2fe53ef1087a8e396dc6d5d2a041e886de";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

test "kdf rfc 1" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "";
    const salt = "";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 4, .r = 1, .p = 1 });

    const hex = "77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

test "kdf rfc 2" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "password";
    const salt = "NaCl";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 10, .r = 8, .p = 16 });

    const hex = "fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

test "kdf rfc 3" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "pleaseletmein";
    const salt = "SodiumChloride";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 14, .r = 8, .p = 1 });

    const hex = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

test "kdf rfc 4" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "pleaseletmein";
    const salt = "SodiumChloride";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 20, .r = 8, .p = 1 });

    const hex = "2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

test "password hashing (crypt format)" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    const str = "$7$A6....1....TrXs5Zk6s8sWHpQgWDIXTR8kUU3s6Jc3s.DtdS8M2i4$a4ik5hGDN7foMuHOW.cp.CtX01UyCeO0.JAG.AHPpx5";
    const password = "Y0!?iQa9M%5ekffW(`";
    try CryptFormatHasher.verify(alloc, str, password);

    const params = Params.interactive;
    var buf: [CryptFormatHasher.pwhash_str_length]u8 = undefined;
    const str2 = try CryptFormatHasher.create(alloc, password, params, &buf);
    try CryptFormatHasher.verify(alloc, str2, password);
}

test "strHash and strVerify" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    const password = "testpass";
    const params = Params.interactive;
    const verify_options = VerifyOptions{ .allocator = alloc };
    var buf: [128]u8 = undefined;

    {
        const str = try strHash(
            password,
            .{ .allocator = alloc, .params = params, .encoding = .crypt },
            &buf,
        );
        try strVerify(str, password, verify_options);
    }
    {
        const str = try strHash(
            password,
            .{ .allocator = alloc, .params = params, .encoding = .phc },
            &buf,
        );
        try strVerify(str, password, verify_options);
    }
}

test "unix-scrypt" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    // https://gitlab.com/jas/scrypt-unix-crypt/blob/master/unix-scrypt.txt
    {
        const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
        const password = "pleaseletmein";
        try strVerify(str, password, .{ .allocator = alloc });
    }
    // one of the libsodium test vectors
    {
        const str = "$7$B6....1....75gBMAGwfFWZqBdyF3WdTQnWdUsuTiWjG1fF9c1jiSD$tc8RoB3.Em3/zNgMLWo2u00oGIoTyJv4fl3Fl8Tix72";
        const password = "^T5H$JYt39n%K*j:W]!1s?vg!:jGi]Ax?..l7[p0v:1jHTpla9;]bUN;?bWyCbtqg nrDFal+Jxl3,2`#^tFSu%v_+7iYse8-cCkNf!tD=KrW)";
        try strVerify(str, password, .{ .allocator = alloc });
    }
}

test "crypt format" {
    const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
    const params = try crypt_format.deserialize(crypt_format.HashResult(32), str);
    var buf: [str.len]u8 = undefined;
    const s1 = try crypt_format.serialize(params, &buf);
    try std.testing.expectEqualStrings(s1, str);
}

test "kdf fast" {
    const TestVector = struct {
        password: []const u8,
        salt: []const u8,
        params: Params,
        want: []const u8,
    };
    const test_vectors = [_]TestVector{
        .{
            .password = "p",
            .salt = "s",
            .params = .{ .ln = 1, .r = 1, .p = 1 },
            .want = &([_]u8{
                0x48, 0xb0, 0xd2, 0xa8, 0xa3, 0x27, 0x26, 0x11,
                0x98, 0x4c, 0x50, 0xeb, 0xd6, 0x30, 0xaf, 0x52,
            }),
        },
    };
    inline for (test_vectors) |v| {
        var dk: [v.want.len]u8 = undefined;
        try kdf(std.testing.allocator, &dk, v.password, v.salt, v.params);
        try std.testing.expectEqualSlices(u8, &dk, v.want);
    }
}