1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const math = std.math;
const mem = std.mem;
const utils = std.crypto.utils;
const Vector = std.meta.Vector;
const Poly1305 = crypto.onetimeauth.Poly1305;
const Blake2b = crypto.hash.blake2.Blake2b;
const X25519 = crypto.dh.X25519;
const Salsa20VecImpl = struct {
const Lane = Vector(4, u32);
const Half = Vector(2, u32);
const BlockVec = [4]Lane;
fn initContext(key: [8]u32, d: [4]u32) BlockVec {
const c = "expand 32-byte k";
const constant_le = comptime [4]u32{
mem.readIntLittle(u32, c[0..4]),
mem.readIntLittle(u32, c[4..8]),
mem.readIntLittle(u32, c[8..12]),
mem.readIntLittle(u32, c[12..16]),
};
return BlockVec{
Lane{ key[0], key[1], key[2], key[3] },
Lane{ key[4], key[5], key[6], key[7] },
Lane{ constant_le[0], constant_le[1], constant_le[2], constant_le[3] },
Lane{ d[0], d[1], d[2], d[3] },
};
}
inline fn salsa20Core(x: *BlockVec, input: BlockVec, comptime feedback: bool) void {
const n1n2n3n0 = Lane{ input[3][1], input[3][2], input[3][3], input[3][0] };
const n1n2 = Half{ n1n2n3n0[0], n1n2n3n0[1] };
const n3n0 = Half{ n1n2n3n0[2], n1n2n3n0[3] };
const k0k1 = Half{ input[0][0], input[0][1] };
const k2k3 = Half{ input[0][2], input[0][3] };
const k4k5 = Half{ input[1][0], input[1][1] };
const k6k7 = Half{ input[1][2], input[1][3] };
const n0k0 = Half{ n3n0[1], k0k1[0] };
const k0n0 = Half{ n0k0[1], n0k0[0] };
const k4k5k0n0 = Lane{ k4k5[0], k4k5[1], k0n0[0], k0n0[1] };
const k1k6 = Half{ k0k1[1], k6k7[0] };
const k6k1 = Half{ k1k6[1], k1k6[0] };
const n1n2k6k1 = Lane{ n1n2[0], n1n2[1], k6k1[0], k6k1[1] };
const k7n3 = Half{ k6k7[1], n3n0[0] };
const n3k7 = Half{ k7n3[1], k7n3[0] };
const k2k3n3k7 = Lane{ k2k3[0], k2k3[1], n3k7[0], n3k7[1] };
var diag0 = input[2];
var diag1 = @shuffle(u32, k4k5k0n0, undefined, [_]i32{ 1, 2, 3, 0 });
var diag2 = @shuffle(u32, n1n2k6k1, undefined, [_]i32{ 1, 2, 3, 0 });
var diag3 = @shuffle(u32, k2k3n3k7, undefined, [_]i32{ 1, 2, 3, 0 });
const start0 = diag0;
const start1 = diag1;
const start2 = diag2;
const start3 = diag3;
var i: usize = 0;
while (i < 20) : (i += 2) {
var a0 = diag1 +% diag0;
diag3 ^= math.rotl(Lane, a0, 7);
var a1 = diag0 +% diag3;
diag2 ^= math.rotl(Lane, a1, 9);
var a2 = diag3 +% diag2;
diag1 ^= math.rotl(Lane, a2, 13);
var a3 = diag2 +% diag1;
diag0 ^= math.rotl(Lane, a3, 18);
var diag3_shift = @shuffle(u32, diag3, undefined, [_]i32{ 3, 0, 1, 2 });
var diag2_shift = @shuffle(u32, diag2, undefined, [_]i32{ 2, 3, 0, 1 });
var diag1_shift = @shuffle(u32, diag1, undefined, [_]i32{ 1, 2, 3, 0 });
diag3 = diag3_shift;
diag2 = diag2_shift;
diag1 = diag1_shift;
a0 = diag3 +% diag0;
diag1 ^= math.rotl(Lane, a0, 7);
a1 = diag0 +% diag1;
diag2 ^= math.rotl(Lane, a1, 9);
a2 = diag1 +% diag2;
diag3 ^= math.rotl(Lane, a2, 13);
a3 = diag2 +% diag3;
diag0 ^= math.rotl(Lane, a3, 18);
diag1_shift = @shuffle(u32, diag1, undefined, [_]i32{ 3, 0, 1, 2 });
diag2_shift = @shuffle(u32, diag2, undefined, [_]i32{ 2, 3, 0, 1 });
diag3_shift = @shuffle(u32, diag3, undefined, [_]i32{ 1, 2, 3, 0 });
diag1 = diag1_shift;
diag2 = diag2_shift;
diag3 = diag3_shift;
}
if (feedback) {
diag0 +%= start0;
diag1 +%= start1;
diag2 +%= start2;
diag3 +%= start3;
}
const x0x1x10x11 = Lane{ diag0[0], diag1[1], diag0[2], diag1[3] };
const x12x13x6x7 = Lane{ diag1[0], diag2[1], diag1[2], diag2[3] };
const x8x9x2x3 = Lane{ diag2[0], diag3[1], diag2[2], diag3[3] };
const x4x5x14x15 = Lane{ diag3[0], diag0[1], diag3[2], diag0[3] };
x[0] = Lane{ x0x1x10x11[0], x0x1x10x11[1], x8x9x2x3[2], x8x9x2x3[3] };
x[1] = Lane{ x4x5x14x15[0], x4x5x14x15[1], x12x13x6x7[2], x12x13x6x7[3] };
x[2] = Lane{ x8x9x2x3[0], x8x9x2x3[1], x0x1x10x11[2], x0x1x10x11[3] };
x[3] = Lane{ x12x13x6x7[0], x12x13x6x7[1], x4x5x14x15[2], x4x5x14x15[3] };
}
fn hashToBytes(out: *[64]u8, x: BlockVec) void {
var i: usize = 0;
while (i < 4) : (i += 1) {
mem.writeIntLittle(u32, out[16 * i + 0 ..][0..4], x[i][0]);
mem.writeIntLittle(u32, out[16 * i + 4 ..][0..4], x[i][1]);
mem.writeIntLittle(u32, out[16 * i + 8 ..][0..4], x[i][2]);
mem.writeIntLittle(u32, out[16 * i + 12 ..][0..4], x[i][3]);
}
}
fn salsa20Xor(out: []u8, in: []const u8, key: [8]u32, d: [4]u32) void {
var ctx = initContext(key, d);
var x: BlockVec = undefined;
var buf: [64]u8 = undefined;
var i: usize = 0;
while (i + 64 <= in.len) : (i += 64) {
salsa20Core(x[0..], ctx, true);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < 64) : (j += 1) {
xout[j] = xin[j];
}
j = 0;
while (j < 64) : (j += 1) {
xout[j] ^= buf[j];
}
ctx[3][2] +%= 1;
if (ctx[3][2] == 0) {
ctx[3][3] += 1;
}
}
if (i < in.len) {
salsa20Core(x[0..], ctx, true);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < in.len % 64) : (j += 1) {
xout[j] = xin[j] ^ buf[j];
}
}
}
fn hsalsa20(input: [16]u8, key: [32]u8) [32]u8 {
var c: [4]u32 = undefined;
for (c) |_, i| {
c[i] = mem.readIntLittle(u32, input[4 * i ..][0..4]);
}
const ctx = initContext(keyToWords(key), c);
var x: BlockVec = undefined;
salsa20Core(x[0..], ctx, false);
var out: [32]u8 = undefined;
mem.writeIntLittle(u32, out[0..4], x[0][0]);
mem.writeIntLittle(u32, out[4..8], x[1][1]);
mem.writeIntLittle(u32, out[8..12], x[2][2]);
mem.writeIntLittle(u32, out[12..16], x[3][3]);
mem.writeIntLittle(u32, out[16..20], x[1][2]);
mem.writeIntLittle(u32, out[20..24], x[1][3]);
mem.writeIntLittle(u32, out[24..28], x[2][0]);
mem.writeIntLittle(u32, out[28..32], x[2][1]);
return out;
}
};
const Salsa20NonVecImpl = struct {
const BlockVec = [16]u32;
fn initContext(key: [8]u32, d: [4]u32) BlockVec {
const c = "expand 32-byte k";
const constant_le = comptime [4]u32{
mem.readIntLittle(u32, c[0..4]),
mem.readIntLittle(u32, c[4..8]),
mem.readIntLittle(u32, c[8..12]),
mem.readIntLittle(u32, c[12..16]),
};
return BlockVec{
constant_le[0], key[0], key[1], key[2],
key[3], constant_le[1], d[0], d[1],
d[2], d[3], constant_le[2], key[4],
key[5], key[6], key[7], constant_le[3],
};
}
const QuarterRound = struct {
a: usize,
b: usize,
c: usize,
d: u6,
};
inline fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
return QuarterRound{
.a = a,
.b = b,
.c = c,
.d = d,
};
}
inline fn salsa20Core(x: *BlockVec, input: BlockVec, comptime feedback: bool) void {
const arx_steps = comptime [_]QuarterRound{
Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18),
Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18),
Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18),
Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18),
Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18),
Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18),
Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18),
Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
};
x.* = input;
var j: usize = 0;
while (j < 20) : (j += 2) {
inline for (arx_steps) |r| {
x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
}
}
if (feedback) {
j = 0;
while (j < 16) : (j += 1) {
x[j] +%= input[j];
}
}
}
fn hashToBytes(out: *[64]u8, x: BlockVec) void {
for (x) |w, i| {
mem.writeIntLittle(u32, out[i * 4 ..][0..4], w);
}
}
fn salsa20Xor(out: []u8, in: []const u8, key: [8]u32, d: [4]u32) void {
var ctx = initContext(key, d);
var x: BlockVec = undefined;
var buf: [64]u8 = undefined;
var i: usize = 0;
while (i + 64 <= in.len) : (i += 64) {
salsa20Core(x[0..], ctx, true);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < 64) : (j += 1) {
xout[j] = xin[j];
}
j = 0;
while (j < 64) : (j += 1) {
xout[j] ^= buf[j];
}
ctx[9] += @boolToInt(@addWithOverflow(u32, ctx[8], 1, &ctx[8]));
}
if (i < in.len) {
salsa20Core(x[0..], ctx, true);
hashToBytes(buf[0..], x);
var xout = out[i..];
const xin = in[i..];
var j: usize = 0;
while (j < in.len % 64) : (j += 1) {
xout[j] = xin[j] ^ buf[j];
}
}
}
fn hsalsa20(input: [16]u8, key: [32]u8) [32]u8 {
var c: [4]u32 = undefined;
for (c) |_, i| {
c[i] = mem.readIntLittle(u32, input[4 * i ..][0..4]);
}
const ctx = initContext(keyToWords(key), c);
var x: BlockVec = undefined;
salsa20Core(x[0..], ctx, false);
var out: [32]u8 = undefined;
mem.writeIntLittle(u32, out[0..4], x[0]);
mem.writeIntLittle(u32, out[4..8], x[5]);
mem.writeIntLittle(u32, out[8..12], x[10]);
mem.writeIntLittle(u32, out[12..16], x[15]);
mem.writeIntLittle(u32, out[16..20], x[6]);
mem.writeIntLittle(u32, out[20..24], x[7]);
mem.writeIntLittle(u32, out[24..28], x[8]);
mem.writeIntLittle(u32, out[28..32], x[9]);
return out;
}
};
const Salsa20Impl = if (std.Target.current.cpu.arch == .x86_64) Salsa20VecImpl else Salsa20NonVecImpl;
fn keyToWords(key: [32]u8) [8]u32 {
var k: [8]u32 = undefined;
var i: usize = 0;
while (i < 8) : (i += 1) {
k[i] = mem.readIntLittle(u32, key[i * 4 ..][0..4]);
}
return k;
}
fn extend(key: [32]u8, nonce: [24]u8) struct { key: [32]u8, nonce: [8]u8 } {
return .{
.key = Salsa20Impl.hsalsa20(nonce[0..16].*, key),
.nonce = nonce[16..24].*,
};
}
/// The Salsa20 stream cipher.
pub const Salsa20 = struct {
/// Nonce length in bytes.
pub const nonce_length = 8;
/// Key length in bytes.
pub const key_length = 32;
/// Add the output of the Salsa20 stream cipher to `in` and stores the result into `out`.
/// WARNING: This function doesn't provide authenticated encryption.
/// Using the AEAD or one of the `box` versions is usually preferred.
pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void {
debug.assert(in.len == out.len);
var d: [4]u32 = undefined;
d[0] = mem.readIntLittle(u32, nonce[0..4]);
d[1] = mem.readIntLittle(u32, nonce[4..8]);
d[2] = @truncate(u32, counter);
d[3] = @truncate(u32, counter >> 32);
Salsa20Impl.salsa20Xor(out, in, keyToWords(key), d);
}
};
/// The XSalsa20 stream cipher.
pub const XSalsa20 = struct {
/// Nonce length in bytes.
pub const nonce_length = 24;
/// Key length in bytes.
pub const key_length = 32;
/// Add the output of the XSalsa20 stream cipher to `in` and stores the result into `out`.
/// WARNING: This function doesn't provide authenticated encryption.
/// Using the AEAD or one of the `box` versions is usually preferred.
pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void {
const extended = extend(key, nonce);
Salsa20.xor(out, in, counter, extended.key, extended.nonce);
}
};
/// The XSalsa20 stream cipher, combined with the Poly1305 MAC
pub const XSalsa20Poly1305 = struct {
/// Authentication tag length in bytes.
pub const tag_length = Poly1305.mac_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20.nonce_length;
/// Key length in bytes.
pub const key_length = XSalsa20.key_length;
/// c: ciphertext: output buffer should be of size m.len
/// tag: authentication tag: output MAC
/// m: message
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void {
debug.assert(c.len == m.len);
const extended = extend(k, npub);
var block0 = [_]u8{0} ** 64;
const mlen0 = math.min(32, m.len);
mem.copy(u8, block0[32..][0..mlen0], m[0..mlen0]);
Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce);
mem.copy(u8, c[0..mlen0], block0[32..][0..mlen0]);
Salsa20.xor(c[mlen0..], m[mlen0..], 1, extended.key, extended.nonce);
var mac = Poly1305.init(block0[0..32]);
mac.update(ad);
mac.update(c);
mac.final(tag);
}
/// m: message: output buffer should be of size c.len
/// c: ciphertext
/// tag: authentication tag
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) !void {
debug.assert(c.len == m.len);
const extended = extend(k, npub);
var block0 = [_]u8{0} ** 64;
const mlen0 = math.min(32, c.len);
mem.copy(u8, block0[32..][0..mlen0], c[0..mlen0]);
Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce);
var mac = Poly1305.init(block0[0..32]);
mac.update(ad);
mac.update(c);
var computedTag: [tag_length]u8 = undefined;
mac.final(&computedTag);
var acc: u8 = 0;
for (computedTag) |_, i| {
acc |= computedTag[i] ^ tag[i];
}
if (acc != 0) {
utils.secureZero(u8, &computedTag);
return error.AuthenticationFailed;
}
mem.copy(u8, m[0..mlen0], block0[32..][0..mlen0]);
Salsa20.xor(m[mlen0..], c[mlen0..], 1, extended.key, extended.nonce);
}
};
/// NaCl-compatible secretbox API.
///
/// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with.
/// A secret key shared by all the recipients must be already known in order to use this API.
///
/// Nonces are 192-bit large and can safely be chosen with a random number generator.
pub const SecretBox = struct {
/// Key length in bytes.
pub const key_length = XSalsa20Poly1305.key_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20Poly1305.nonce_length;
/// Authentication tag length in bytes.
pub const tag_length = XSalsa20Poly1305.tag_length;
/// Encrypt and authenticate `m` using a nonce `npub` and a key `k`.
/// `c` must be exactly `tag_length` longer than `m`, as it will store both the ciphertext and the authentication tag.
pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void {
debug.assert(c.len == tag_length + m.len);
XSalsa20Poly1305.encrypt(c[tag_length..], c[0..tag_length], m, "", npub, k);
}
/// Verify and decrypt `c` using a nonce `npub` and a key `k`.
/// `m` must be exactly `tag_length` smaller than `c`, as `c` includes an authentication tag in addition to the encrypted message.
pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, k: [key_length]u8) !void {
if (c.len < tag_length) {
return error.AuthenticationFailed;
}
debug.assert(m.len == c.len - tag_length);
return XSalsa20Poly1305.decrypt(m, c[tag_length..], c[0..tag_length].*, "", npub, k);
}
};
/// NaCl-compatible box API.
///
/// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with.
/// This construction uses public-key cryptography. A shared secret doesn't have to be known in advance by both parties.
/// Instead, a message is encrypted using a sender's secret key and a recipient's public key,
/// and is decrypted using the recipient's secret key and the sender's public key.
///
/// Nonces are 192-bit large and can safely be chosen with a random number generator.
pub const Box = struct {
/// Public key length in bytes.
pub const public_length = X25519.public_length;
/// Secret key length in bytes.
pub const secret_length = X25519.secret_length;
/// Shared key length in bytes.
pub const shared_length = XSalsa20Poly1305.key_length;
/// Seed (for key pair creation) length in bytes.
pub const seed_length = X25519.seed_length;
/// Nonce length in bytes.
pub const nonce_length = XSalsa20Poly1305.nonce_length;
/// Authentication tag length in bytes.
pub const tag_length = XSalsa20Poly1305.tag_length;
/// A key pair.
pub const KeyPair = X25519.KeyPair;
/// Compute a secret suitable for `secretbox` given a recipent's public key and a sender's secret key.
pub fn createSharedSecret(public_key: [public_length]u8, secret_key: [secret_length]u8) ![shared_length]u8 {
const p = try X25519.scalarmult(secret_key, public_key);
const zero = [_]u8{0} ** 16;
return Salsa20Impl.hsalsa20(zero, p);
}
/// Encrypt and authenticate a message using a recipient's public key `public_key` and a sender's `secret_key`.
pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) !void {
const shared_key = try createSharedSecret(public_key, secret_key);
return SecretBox.seal(c, m, npub, shared_key);
}
/// Verify and decrypt a message using a recipient's secret key `public_key` and a sender's `public_key`.
pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) !void {
const shared_key = try createSharedSecret(public_key, secret_key);
return SecretBox.open(m, c, npub, shared_key);
}
};
/// libsodium-compatible sealed boxes
///
/// Sealed boxes are designed to anonymously send messages to a recipient given their public key.
/// Only the recipient can decrypt these messages, using their private key.
/// While the recipient can verify the integrity of the message, it cannot verify the identity of the sender.
///
/// A message is encrypted using an ephemeral key pair, whose secret part is destroyed right after the encryption process.
pub const SealedBox = struct {
pub const public_length = Box.public_length;
pub const secret_length = Box.secret_length;
pub const seed_length = Box.seed_length;
pub const seal_length = Box.public_length + Box.tag_length;
/// A key pair.
pub const KeyPair = Box.KeyPair;
fn createNonce(pk1: [public_length]u8, pk2: [public_length]u8) [Box.nonce_length]u8 {
var hasher = Blake2b(Box.nonce_length * 8).init(.{});
hasher.update(&pk1);
hasher.update(&pk2);
var nonce: [Box.nonce_length]u8 = undefined;
hasher.final(&nonce);
return nonce;
}
/// Encrypt a message `m` for a recipient whose public key is `public_key`.
/// `c` must be `seal_length` bytes larger than `m`, so that the required metadata can be added.
pub fn seal(c: []u8, m: []const u8, public_key: [public_length]u8) !void {
debug.assert(c.len == m.len + seal_length);
var ekp = try KeyPair.create(null);
const nonce = createNonce(ekp.public_key, public_key);
mem.copy(u8, c[0..public_length], ekp.public_key[0..]);
try Box.seal(c[Box.public_length..], m, nonce, public_key, ekp.secret_key);
utils.secureZero(u8, ekp.secret_key[0..]);
}
/// Decrypt a message using a key pair.
/// `m` must be exactly `seal_length` bytes smaller than `c`, as `c` also includes metadata.
pub fn open(m: []u8, c: []const u8, keypair: KeyPair) !void {
if (c.len < seal_length) {
return error.AuthenticationFailed;
}
const epk = c[0..public_length];
const nonce = createNonce(epk.*, keypair.public_key);
return Box.open(m, c[public_length..], nonce, epk.*, keypair.secret_key);
}
};
const htest = @import("test.zig");
test "(x)salsa20" {
const key = [_]u8{0x69} ** 32;
const nonce = [_]u8{0x42} ** 8;
const msg = [_]u8{0} ** 20;
var c: [msg.len]u8 = undefined;
Salsa20.xor(&c, msg[0..], 0, key, nonce);
htest.assertEqual("30ff9933aa6534ff5207142593cd1fca4b23bdd8", c[0..]);
const extended_nonce = [_]u8{0x42} ** 24;
XSalsa20.xor(&c, msg[0..], 0, key, extended_nonce);
htest.assertEqual("b4ab7d82e750ec07644fa3281bce6cd91d4243f9", c[0..]);
}
test "xsalsa20poly1305" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var c: [msg.len]u8 = undefined;
var key: [XSalsa20Poly1305.key_length]u8 = undefined;
var nonce: [XSalsa20Poly1305.nonce_length]u8 = undefined;
var tag: [XSalsa20Poly1305.tag_length]u8 = undefined;
crypto.random.bytes(&msg);
crypto.random.bytes(&key);
crypto.random.bytes(&nonce);
XSalsa20Poly1305.encrypt(c[0..], &tag, msg[0..], "ad", nonce, key);
try XSalsa20Poly1305.decrypt(msg2[0..], c[0..], tag, "ad", nonce, key);
}
test "xsalsa20poly1305 secretbox" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var key: [XSalsa20Poly1305.key_length]u8 = undefined;
var nonce: [Box.nonce_length]u8 = undefined;
var boxed: [msg.len + Box.tag_length]u8 = undefined;
crypto.random.bytes(&msg);
crypto.random.bytes(&key);
crypto.random.bytes(&nonce);
SecretBox.seal(boxed[0..], msg[0..], nonce, key);
try SecretBox.open(msg2[0..], boxed[0..], nonce, key);
}
test "xsalsa20poly1305 box" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var nonce: [Box.nonce_length]u8 = undefined;
var boxed: [msg.len + Box.tag_length]u8 = undefined;
crypto.random.bytes(&msg);
crypto.random.bytes(&nonce);
var kp1 = try Box.KeyPair.create(null);
var kp2 = try Box.KeyPair.create(null);
try Box.seal(boxed[0..], msg[0..], nonce, kp1.public_key, kp2.secret_key);
try Box.open(msg2[0..], boxed[0..], nonce, kp2.public_key, kp1.secret_key);
}
test "xsalsa20poly1305 sealedbox" {
var msg: [100]u8 = undefined;
var msg2: [msg.len]u8 = undefined;
var boxed: [msg.len + SealedBox.seal_length]u8 = undefined;
crypto.random.bytes(&msg);
var kp = try Box.KeyPair.create(null);
try SealedBox.seal(boxed[0..], msg[0..], kp.public_key);
try SealedBox.open(msg2[0..], boxed[0..], kp);
}
test "secretbox twoblocks" {
const key = [_]u8{ 0xc9, 0xc9, 0x4d, 0xcf, 0x68, 0xbe, 0x00, 0xe4, 0x7f, 0xe6, 0x13, 0x26, 0xfc, 0xc4, 0x2f, 0xd0, 0xdb, 0x93, 0x91, 0x1c, 0x09, 0x94, 0x89, 0xe1, 0x1b, 0x88, 0x63, 0x18, 0x86, 0x64, 0x8b, 0x7b };
const nonce = [_]u8{ 0xa4, 0x33, 0xe9, 0x0a, 0x07, 0x68, 0x6e, 0x9a, 0x2b, 0x6d, 0xd4, 0x59, 0x04, 0x72, 0x3e, 0xd3, 0x8a, 0x67, 0x55, 0xc7, 0x9e, 0x3e, 0x77, 0xdc };
const msg = [_]u8{'a'} ** 97;
var ciphertext: [msg.len + SecretBox.tag_length]u8 = undefined;
SecretBox.seal(&ciphertext, &msg, nonce, key);
htest.assertEqual("b05760e217288ba079caa2fd57fd3701784974ffcfda20fe523b89211ad8af065a6eb37cdb29d51aca5bd75dafdd21d18b044c54bb7c526cf576c94ee8900f911ceab0147e82b667a28c52d58ceb29554ff45471224d37b03256b01c119b89ff6d36855de8138d103386dbc9d971f52261", &ciphertext);
}
|