1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const native_endian = builtin.cpu.arch.endian();
const mode = @import("builtin").mode;
/// The Keccak-f permutation.
pub fn KeccakF(comptime f: u11) type {
comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid bit size
const T = std.meta.Int(.unsigned, f / 25);
const Block = [25]T;
const PI = [_]u5{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
};
return struct {
const Self = @This();
/// Number of bytes in the state.
pub const block_bytes = f / 8;
/// Maximum number of rounds for the given f parameter.
pub const max_rounds = 12 + 2 * math.log2(f / 25);
// Round constants
const RC = rc: {
const RC64 = [_]u64{
0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008,
};
var rc: [max_rounds]T = undefined;
for (&rc, RC64[0..max_rounds]) |*t, c| t.* = @as(T, @truncate(c));
break :rc rc;
};
st: Block = [_]T{0} ** 25,
/// Initialize the state from a slice of bytes.
pub fn init(bytes: [block_bytes]u8) Self {
var self: Self = undefined;
inline for (&self.st, 0..) |*r, i| {
r.* = mem.readInt(T, bytes[@sizeOf(T) * i ..][0..@sizeOf(T)], .little);
}
return self;
}
/// A representation of the state as bytes. The byte order is architecture-dependent.
pub fn asBytes(self: *Self) *[block_bytes]u8 {
return mem.asBytes(&self.st);
}
/// Byte-swap the entire state if the architecture doesn't match the required endianness.
pub fn endianSwap(self: *Self) void {
for (&self.st) |*w| {
w.* = mem.littleToNative(T, w.*);
}
}
/// Set bytes starting at the beginning of the state.
pub fn setBytes(self: *Self, bytes: []const u8) void {
var i: usize = 0;
while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) {
self.st[i / @sizeOf(T)] = mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little);
}
if (i < bytes.len) {
var padded = [_]u8{0} ** @sizeOf(T);
@memcpy(padded[0 .. bytes.len - i], bytes[i..]);
self.st[i / @sizeOf(T)] = mem.readInt(T, padded[0..], .little);
}
}
/// XOR a byte into the state at a given offset.
pub fn addByte(self: *Self, byte: u8, offset: usize) void {
const z = @sizeOf(T) * @as(math.Log2Int(T), @truncate(offset % @sizeOf(T)));
self.st[offset / @sizeOf(T)] ^= @as(T, byte) << z;
}
/// XOR bytes into the beginning of the state.
pub fn addBytes(self: *Self, bytes: []const u8) void {
var i: usize = 0;
while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) {
self.st[i / @sizeOf(T)] ^= mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little);
}
if (i < bytes.len) {
var padded = [_]u8{0} ** @sizeOf(T);
@memcpy(padded[0 .. bytes.len - i], bytes[i..]);
self.st[i / @sizeOf(T)] ^= mem.readInt(T, padded[0..], .little);
}
}
/// Extract the first bytes of the state.
pub fn extractBytes(self: *Self, out: []u8) void {
var i: usize = 0;
while (i + @sizeOf(T) <= out.len) : (i += @sizeOf(T)) {
mem.writeInt(T, out[i..][0..@sizeOf(T)], self.st[i / @sizeOf(T)], .little);
}
if (i < out.len) {
var padded = [_]u8{0} ** @sizeOf(T);
mem.writeInt(T, padded[0..], self.st[i / @sizeOf(T)], .little);
@memcpy(out[i..], padded[0 .. out.len - i]);
}
}
/// XOR the first bytes of the state into a slice of bytes.
pub fn xorBytes(self: *Self, out: []u8, in: []const u8) void {
assert(out.len == in.len);
var i: usize = 0;
while (i + @sizeOf(T) <= in.len) : (i += @sizeOf(T)) {
const x = mem.readInt(T, in[i..][0..@sizeOf(T)], native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]);
mem.writeInt(T, out[i..][0..@sizeOf(T)], x, native_endian);
}
if (i < in.len) {
var padded = [_]u8{0} ** @sizeOf(T);
@memcpy(padded[0 .. in.len - i], in[i..]);
const x = mem.readInt(T, &padded, native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]);
mem.writeInt(T, &padded, x, native_endian);
@memcpy(out[i..], padded[0 .. in.len - i]);
}
}
/// Set the words storing the bytes of a given range to zero.
pub fn clear(self: *Self, from: usize, to: usize) void {
@memset(self.st[from / @sizeOf(T) .. (to + @sizeOf(T) - 1) / @sizeOf(T)], 0);
}
/// Clear the entire state, disabling compiler optimizations.
pub fn secureZero(self: *Self) void {
std.crypto.secureZero(T, &self.st);
}
inline fn round(self: *Self, rc: T) void {
const st = &self.st;
// theta
var t = [_]T{0} ** 5;
inline for (0..5) |i| {
inline for (0..5) |j| {
t[i] ^= st[j * 5 + i];
}
}
inline for (0..5) |i| {
inline for (0..5) |j| {
st[j * 5 + i] ^= t[(i + 4) % 5] ^ math.rotl(T, t[(i + 1) % 5], 1);
}
}
// rho+pi
var last = st[1];
comptime var rotc = 0;
inline for (0..24) |i| {
const x = PI[i];
const tmp = st[x];
rotc = (rotc + i + 1) % @bitSizeOf(T);
st[x] = math.rotl(T, last, rotc);
last = tmp;
}
inline for (0..5) |i| {
inline for (0..5) |j| {
t[j] = st[i * 5 + j];
}
inline for (0..5) |j| {
st[i * 5 + j] = t[j] ^ (~t[(j + 1) % 5] & t[(j + 2) % 5]);
}
}
// iota
st[0] ^= rc;
}
/// Apply a (possibly) reduced-round permutation to the state.
pub fn permuteR(self: *Self, comptime rounds: u5) void {
var i = RC.len - rounds;
while (i < RC.len - RC.len % 3) : (i += 3) {
self.round(RC[i]);
self.round(RC[i + 1]);
self.round(RC[i + 2]);
}
while (i < RC.len) : (i += 1) {
self.round(RC[i]);
}
}
/// Apply a full-round permutation to the state.
pub fn permute(self: *Self) void {
self.permuteR(max_rounds);
}
};
}
/// A generic Keccak-P state.
pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type {
comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid state size
comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size
// In debug mode, track transitions to prevent insecure ones.
const Op = enum { uninitialized, initialized, updated, absorb, squeeze };
const TransitionTracker = if (mode == .Debug) struct {
op: Op = .uninitialized,
fn to(tracker: *@This(), next_op: Op) void {
switch (next_op) {
.updated => {
switch (tracker.op) {
.uninitialized => @panic("cannot permute before initializing"),
else => {},
}
},
.absorb => {
switch (tracker.op) {
.squeeze => @panic("cannot absorb right after squeezing"),
else => {},
}
},
.squeeze => {
switch (tracker.op) {
.uninitialized => @panic("cannot squeeze before initializing"),
.initialized => @panic("cannot squeeze right after initializing"),
.absorb => @panic("cannot squeeze right after absorbing"),
else => {},
}
},
.uninitialized => @panic("cannot transition to uninitialized"),
.initialized => {},
}
tracker.op = next_op;
}
} else struct {
// No-op in non-debug modes.
inline fn to(tracker: *@This(), next_op: Op) void {
_ = tracker; // no-op
_ = next_op; // no-op
}
};
return struct {
const Self = @This();
/// The block length, or rate, in bytes.
pub const rate = KeccakF(f).block_bytes - capacity / 8;
/// Keccak does not have any options.
pub const Options = struct {};
/// The input delimiter.
delim: u8,
offset: usize = 0,
buf: [rate]u8 = undefined,
st: KeccakF(f) = .{},
transition: TransitionTracker = .{},
/// Absorb a slice of bytes into the sponge.
pub fn absorb(self: *Self, bytes: []const u8) void {
self.transition.to(.absorb);
var i: usize = 0;
if (self.offset > 0) {
const left = @min(rate - self.offset, bytes.len);
@memcpy(self.buf[self.offset..][0..left], bytes[0..left]);
self.offset += left;
if (left == bytes.len) return;
if (self.offset == rate) {
self.st.addBytes(self.buf[0..]);
self.st.permuteR(rounds);
self.offset = 0;
}
i = left;
}
while (i + rate < bytes.len) : (i += rate) {
self.st.addBytes(bytes[i..][0..rate]);
self.st.permuteR(rounds);
}
const left = bytes.len - i;
if (left > 0) {
@memcpy(self.buf[0..left], bytes[i..][0..left]);
}
self.offset = left;
}
/// Initialize the state from a slice of bytes.
pub fn init(bytes: [f / 8]u8, delim: u8) Self {
var st = Self{ .st = KeccakF(f).init(bytes), .delim = delim };
st.transition.to(.initialized);
return st;
}
/// Permute the state
pub fn permute(self: *Self) void {
if (mode == .Debug) {
if (self.transition.op == .absorb and self.offset > 0) {
@panic("cannot permute with pending input - call fillBlock() or pad() instead");
}
}
self.transition.to(.updated);
self.st.permuteR(rounds);
self.offset = 0;
}
/// Align the input to the rate boundary and permute.
pub fn fillBlock(self: *Self) void {
self.transition.to(.absorb);
self.st.addBytes(self.buf[0..self.offset]);
self.st.permuteR(rounds);
self.offset = 0;
self.transition.to(.updated);
}
/// Mark the end of the input.
pub fn pad(self: *Self) void {
self.transition.to(.absorb);
self.st.addBytes(self.buf[0..self.offset]);
if (self.offset == rate) {
self.st.permuteR(rounds);
self.offset = 0;
}
self.st.addByte(self.delim, self.offset);
self.st.addByte(0x80, rate - 1);
self.st.permuteR(rounds);
self.offset = 0;
self.transition.to(.updated);
}
/// Squeeze a slice of bytes from the sponge.
/// The function can be called multiple times.
pub fn squeeze(self: *Self, out: []u8) void {
self.transition.to(.squeeze);
var i: usize = 0;
if (self.offset == rate) {
self.st.permuteR(rounds);
} else if (self.offset > 0) {
@branchHint(.unlikely);
var buf: [rate]u8 = undefined;
self.st.extractBytes(buf[0..]);
const left = @min(rate - self.offset, out.len);
@memcpy(out[0..left], buf[self.offset..][0..left]);
self.offset += left;
if (left == out.len) return;
if (self.offset == rate) {
self.offset = 0;
self.st.permuteR(rounds);
}
i = left;
}
while (i + rate < out.len) : (i += rate) {
self.st.extractBytes(out[i..][0..rate]);
self.st.permuteR(rounds);
}
const left = out.len - i;
if (left > 0) {
self.st.extractBytes(out[i..][0..left]);
}
self.offset = left;
}
};
}
test "Keccak-f800" {
var st: KeccakF(800) = .{
.st = .{
0xE531D45D, 0xF404C6FB, 0x23A0BF99, 0xF1F8452F, 0x51FFD042, 0xE539F578, 0xF00B80A7,
0xAF973664, 0xBF5AF34C, 0x227A2424, 0x88172715, 0x9F685884, 0xB15CD054, 0x1BF4FC0E,
0x6166FA91, 0x1A9E599A, 0xA3970A1F, 0xAB659687, 0xAFAB8D68, 0xE74B1015, 0x34001A98,
0x4119EFF3, 0x930A0E76, 0x87B28070, 0x11EFE996,
},
};
st.permute();
const expected: [25]u32 = .{
0x75BF2D0D, 0x9B610E89, 0xC826AF40, 0x64CD84AB, 0xF905BDD6, 0xBC832835, 0x5F8001B9,
0x15662CCE, 0x8E38C95E, 0x701FE543, 0x1B544380, 0x89ACDEFF, 0x51EDB5DE, 0x0E9702D9,
0x6C19AA16, 0xA2913EEE, 0x60754E9A, 0x9819063C, 0xF4709254, 0xD09F9084, 0x772DA259,
0x1DB35DF7, 0x5AA60162, 0x358825D5, 0xB3783BAB,
};
try std.testing.expectEqualSlices(u32, &st.st, &expected);
}
test "squeeze" {
var st = State(800, 256, 22).init([_]u8{0x80} ** 100, 0x01);
var out0: [15]u8 = undefined;
var out1: [out0.len]u8 = undefined;
st.permute();
var st0 = st;
st0.squeeze(out0[0..]);
var st1 = st;
st1.squeeze(out1[0 .. out1.len / 2]);
st1.squeeze(out1[out1.len / 2 ..]);
try std.testing.expectEqualSlices(u8, &out0, &out1);
var out2: [100]u8 = undefined;
var out3: [out2.len]u8 = undefined;
var st2 = st;
st2.squeeze(out2[0..]);
var st3 = st;
st3.squeeze(out3[0 .. out2.len / 2]);
st3.squeeze(out3[out2.len / 2 ..]);
try std.testing.expectEqualSlices(u8, &out2, &out3);
}
|